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ORCA is a c++ whole-body reactive controller meant to compute the desired actuation torque of a robot given some
tasks to perform and some constraints.

Getting Started 1
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CHAPTER 1

Motivation

1.1 Table of Contents

1.1.1 Installation and Configuration

This guide will take you through the steps to install ORCA on your machine. ORCA is cross platform so you should
be able to install it on Linux, OSX, and Windows.

Dependencies

• A modern c++11 compiler (gcc > 4.8 or clang > 3.8)

• cmake > 3.1

• iDynTree (optional, shipped)

• qpOASES 3 (optional, shipped)

• Eigen 3 (optional, shipped)

• Gazebo 8 (optional)

ORCA is self contained! That means that is ships with both iDynTree and qpOASES inside the project, allowing
for fast installations and easy integration on other platforms. Therefore you can start by simply building ORCA from
source and it will include the necessary dependencies so you can get up and running.

Always keep in mind that it’s better to install the dependencies separately if you plan to use iDynTree or qpOASES
in other projects. For now only iDynTree headers appear in public headers, but will be removed eventually to ease the
distribution of this library.

If you want to install the dependencies separately please read the following section: Installing the dependencies.
Otherwise, if you just want to get coding, then jump ahead to Installing ORCA.
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Note: You can almost always avoid calling sudo, by calling cmake ..
-DCMAKE_INSTALL_PREFIX=/some/dir and exporting the CMAKE_PREFIX_PATH variable: export
CMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH:/some/dir.

Installing the dependencies

This installation requires you to build the dependencies separately, but will give you better control over versioning and
getting the latest features and bug fixes.

Eigen

wget http://bitbucket.org/eigen/eigen/get/3.3.4.tar.bz2
tar xjvf 3.3.4.tar.bz2
cd eigen-eigen-dc6cfdf9bcec
mkdir build ; cd build
cmake --build .
sudo cmake --build . --target install

qpOASES

wget https://www.coin-or.org/download/source/qpOASES/qpOASES-3.2.1.zip
unzip qpOASES-3.2.1.zip
cd qpOASES-3.2.1
mkdir build ; cd build
cmake .. -DCMAKE_CXX_FLAGS="-fPIC" -DCMAKE_BUILD_TYPE=Release
cmake --build .
sudo cmake --build . --target install

iDynTree

git clone https://github.com/robotology/idyntree
cd idyntree
mkdir build ; cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
sudo cmake --build . --target install

Gazebo

Examples are built with Gazebo 8. They can be adapted of course to be backwards compatible.

curl -ssL http://get.gazebosim.org | sh
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Installing ORCA

Whether or not you have installed the dependencies separately, you are now ready to clone, build and install ORCA.
Hooray.

git clone https://github.com/syroco/orca
cd orca
mkdir build ; cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
sudo cmake --build . --target install

Testing your installation

Assuming you followed the directions to the letter and encountered no compiler errors along the way, then you are
ready to get started with ORCA. Before moving on to the Examples, check out the Quick Start Guide to test your
install and awe in the epicness of ORCA!

1.1.2 Quick Start Guide

First off, make sure you have followed the Installation and Configuration guide step by step.

If you have successfully installed ORCA then we can go ahead and try out one of the examples to get things up and
running. To do so we will launch the example: 06-trajectory_following (more info here: Minimum jerk
Cartesian trajectory following)

This example assumes you have Gazebo >=8.0 installed on your machine. If not please follow the Gazebo tutorial for
your system (http://gazebosim.org/tutorials?cat=install) and rebuild the ORCA library.

Once you have Gazebo, to launch the example open a terminal and run:

06-trajectory_following [path_to_orca]/examples/resources/lwr.urdf

Important: Make sure to replace [path_to_orca] with the real path to the ORCA repo on your system.

Now, open a second terminal and run:

gzclient

If everything goes well then you should see the robot moving back and forth like this:

What’s next?

Check out Where to go from here? for more info.
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1.1.3 Where to go from here?

Check out the examples

A number of examples have been included in the source code to help you better understand how ORCA works and how
you can use it. The examples are grouped based on the concepts they demonstrate. We also provide some examples
for using 3rd party libraries together with ORCA.

Want to use ORCA in you project?

Check out the Using ORCA in your projects page for information on how to include the ORCA library into your next
control project.

Check out the API Documentation

You can find the Doxygen generated API documentation at the following link: API Documentation. This will help
you navigate the ORCA API for your projects.

ROS or OROCOS user?

We have written ROS and OROCOS wrappers for the ORCA library and done most of the heavy lifting so you can get
started using the contoller right away. To learn more about these projects please check out their respective pages:

ORCA_ROS: https://github.com/syroco/orca_ros

RTT_ORCA: https://github.com/syroco/rtt_orca (Compatible with ORCA < version 2.0.0)

1.1.4 Building the documentation

The ORCA documentation is composed of two parts. The user’s manual (what you are currently reading) and the
API Reference. Since ORCA is written entirely in c++ the API documentation is generated with Doxygen. The
manual, on the otherhand, is generated with python Sphinx. . . because frankly it is prettier.

Obviously, you can always visit the url: insert_url_here

to read the documentation online, but you can also generate it locally easily thanks to the magical powers of python.

How to build

First we need to install some dependencies for python and of course doxygen.

Python dependencies

pip3 install -U --user pip sphinx sphinx-autobuild recommonmark sphinx_rtd_theme

or if using Python 2.x
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pip2 install -U --user pip sphinx sphinx-autobuild recommonmark sphinx_rtd_theme

Doxygen

You can always install Doxygen from source by following:

git clone https://github.com/doxygen/doxygen.git
cd doxygen
mkdir build
cd build
cmake -G "Unix Makefiles" ..
make
sudo make install

but we would recommend installing the binaries.

Linux:

sudo apt install doxygen

OSX:

brew install doxygen

Windows:

Download the executable file here: http://www.stack.nl/~dimitri/doxygen/download.html and follow the install wizard.

Building the docs with Sphinx

cd [orca_root]
cd docs/
make html

[orca_root] is the path to wherever you cloned the repo i.e. /home/$USER/orca/.

How to browse

Since Sphinx builds static websites you can simply find the file docs/build/html/index.html and open it in
a browser.

If you prefer to be a fancy-pants then you can launch a local web server by navigating to docs/ and running:

make livehtml

This method has the advantage of automatically refreshing when you make changes to the .rst files. You can browse
the site at: http://127.0.0.1:8000.

1.1. Table of Contents 7
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1.1.5 Using ORCA in your projects

If you want to you ORCA in your project you can either use pure CMake or catkin.

CMake

# You need at least version 3.1 to use the modern CMake targets.
cmake_minimum_required(VERSION 3.1.0)

# Your project's name
project(my_super_orca_project)

# Tell CMake to find ORCA
find_package(orca REQUIRED)

# Add your executable(s) and/or library(ies) and their corresponding source files.
add_executable(${PROJECT_NAME} my_super_orca_project.cc)

# Point CMake to the ORCA targets.
target_link_libraries(${PROJECT_NAME} orca::orca)

catkin

Note: As of now, catkin does not support modern cmake targets and so you have some superfluous cmake steps to
do when working with catkin workspaces.

# You need at least version 2.8.3 to use the modern CMake targets.
cmake_minimum_required(VERSION 2.8.3)

# Your project's name
project(my_super_orca_catkin_project)

# Tell CMake to find ORCA
find_package(orca REQUIRED)

# Tell catkin to find ORCA
find_package(catkin REQUIRED COMPONENTS orca)

# Include the catkin headers
include_directories(${catkin_INCLUDE_DIRS})

# Add your executable(s) and/or library(ies) and their corresponding source files.
add_executable(${PROJECT_NAME} my_super_orca_catkin_project.cc)

# Point CMake to the catkin and ORCA targets.
target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES} orca::orca)

1.1.6 API Reference

All of the API documentation is autogenerated using Doxygen. Click the link below to be redirected.
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API Documentation

1.1.7 Basic

Simple controller

Note: The source code for this example can be found in [orca_root]/examples/basic/
01-simple_controller.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/
basic/01-simple_controller.cc

Objective

In this example we want to show the basics of using ORCA. Here, we create a minimal controller with one task and
some common constraints.

Introduction

First we need to include the appropriate headers and use the right namespaces. When you are getting started the easiest
solution is to use the helper header orca.h and helper namespace orca::all which include all the necessary
headers and opens up all their namespaces. This helps with reducing the verbosity of the examples here but is not
recommended for production builds because it will cause code bloat.

#include <orca/orca.h>
using namespace orca::all;

We then create our main() function. . .

int main(int argc, char const *argv[])

and parse the command line arguments:

if(argc < 2)
{

std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -l
→˓debug/info/warning/error)" << "\n";

return -1;
}
std::string urdf_url(argv[1]);

orca::utils::Logger::parseArgv(argc, argv);

ORCA provides a utility class called Loggerwhich, as its name implies, helps log output. See the API documentation
for more information on logging levels.

Setup

Now we get to the good stuff. We start by creating a robot model which gives us access to the robot’s kinematics and
dynamics.

1.1. Table of Contents 9
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auto robot_model = std::make_shared<RobotModel>();
robot->loadModelFromFile(urdf_url);
robot->setBaseFrame("base_link");
robot->setGravity(Eigen::Vector3d(0,0,-9.81));

We first instantiate a shared_ptr to the class RobotModel. We can pass a robot name, but if we don’t,
it is extracted from the urdf, which is loaded from a file in robot->loadModelFromFile(urdf_url);
. If the URDF is parsed then we need to set the base frame in which all transformations (e.g. end effector
pose) are expressed in robot->setBaseFrame("base_link");. Finally we manually set the gravity vec-
tor robot->setGravity(Eigen::Vector3d(0,0,-9.81)); (this is optional).

The next step is to set the initial state of the robot. For your convenience, ORCA provides a helper class called
EigenRobotStatewhich stores the whole state of the robot as eigen vectors/matrices. This class is totally optional,
it is just meant to keep consistency for the sizes of all the vectors/matrices. You can use it to fill data from either a real
robot or simulated robot.

EigenRobotState eigState;
eigState.resize(robot->getNrOfDegreesOfFreedom());
eigState.jointPos.setZero();
eigState.jointVel.setZero();
robot->setRobotState(eigState.jointPos,eigState.jointVel);

First we resize all the vectors/matrices to match the robot configuration and set the joint positions and velocities to
zero. Initial joint positions are often non-zero but we are lazy and setZero() is so easy to type. Finally, we set the
robot state, robot->setRobotState(eigState.jointPos,eigState.jointVel);. Now the robot is
considered ‘initialized’.

Note: Here we only set 𝑞, 𝑞̇ because in this example we are dealing with a fixed base robot.

Creating the Controller

With the robot created and initialized, we can construct a Controller:

// Instanciate an ORCA Controller
orca::optim::Controller controller(

"controller"
,robot
,orca::optim::ResolutionStrategy::OneLevelWeighted
,QPSolver::qpOASES

);

To do so we pass a name, "controller", the robot model, robot, a ResolutionStrategy,
orca::optim::ResolutionStrategy::OneLevelWeighted, and a solver, QPSolver::qpOASES.

Note: As of now, the only supported solver is qpOASES, however OSQP will be integrated in a future release.

Note: Other ResolutionStrategy options include: MultiLevelWeighted, and Generalized. Please be
aware that these strategies are not yet officially supported.

If your robot’s low level controller takes into account the gravity and coriolis torques already (Like with KUKA LWR)
then you can tell the controller to remove these components from the torques computed by the solver. Setting them to
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false keeps the components in the solution (this is the default behavior).

controller.removeGravityTorquesFromSolution(true);
controller.removeCoriolisTorquesFromSolution(true);

Adding Tasks

With the controller created we can now start adding tasks. In this introductory example, we add only a Cartesian
acceleration task for the end-effector.

auto cart_task = std::make_shared<CartesianTask>("CartTask_EE");
controller.addTask(cart_task);

A shared_ptr to a CartesianTask is created with a unique name, CartTask_EE. The task is then added to
the controller to initialize it.

For this task, we want to control link_7,

cart_task->setControlFrame("link_7");

And set its desired pose:

Eigen::Affine3d cart_pos_ref;
cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();

We also set the desired cartesian velocity and acceleration to zero.

Vector6d cart_vel_ref = Vector6d::Zero();
Vector6d cart_acc_ref = Vector6d::Zero();

Note: Rotation is done with a Matrix3x3 and it can be initialized in a few ways. Note that each of these methods
produce equivalent Rotation matrices in this case.

Example 1: create a quaternion from Euler anglers ZYZ convention

Eigen::Quaterniond quat;
quat = Eigen::AngleAxisd(0, Eigen::Vector3d::UnitZ())

* Eigen::AngleAxisd(0, Eigen::Vector3d::UnitY())

* Eigen::AngleAxisd(0, Eigen::Vector3d::UnitZ());
cart_pos_ref.linear() = quat.toRotationMatrix();

Example 2: create a quaternion from RPY convention

cart_pos_ref.linear() = quatFromRPY(0,0,0).toRotationMatrix();

Example 3: create a quaternion from Kuka Convention

cart_pos_ref.linear() = quatFromKukaConvention(0,0,0).toRotationMatrix();

Example 4: use an Identity quaternion

cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();

1.1. Table of Contents 11
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The desired values are set on the servo controller because CartesianTask expects a cartesian acceleration, which
is computed automatically by the servo controller.

cart_task->servoController()->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_
→˓ref);

Now set the servoing PID

Vector6d P;
P << 1000, 1000, 1000, 10, 10, 10;
cart_task->servoController()->pid()->setProportionalGain(P);
Vector6d D;
D << 100, 100, 100, 1, 1, 1;
cart_task->servoController()->pid()->setDerivativeGain(D);

Adding Constraints

Now we add some constraints. We start with a joint torque constraint for all the actuated DoF. To create it we first get
the number of actuated joints from the model.

const int ndof = robot->getNrOfDegreesOfFreedom();

The joint torque limit is usually given by the robot manufacturer and included in most robot descriptions, but for now
it is not parsed directely from the URDF - so we need to add it manually.

auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit");
controller.addConstraint(jnt_trq_cstr);
Eigen::VectorXd jntTrqMax(ndof);
jntTrqMax.setConstant(200.0);
jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);

We first create a shared_ptr with a unique name, auto jnt_trq_cstr =
std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit"); and add it to
the controller controller.addConstraint(jnt_trq_cstr);. We then set the torque limits to ±200𝑁𝑚.

Contrary to torque limits, joint position limits are automatically extracted from the URDF model. Note that you can
set them if you want by simply doing jnt_pos_cstr->setLimits(jntPosMin,jntPosMax).

auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>("JointPositionLimit
→˓");
controller.addConstraint(jnt_pos_cstr);

Joint velocity limits are usually given by the robot manufacturer but like the torque limits, must be added manually for
now.

auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>("JointVelocityLimit
→˓");
controller.addConstraint(jnt_vel_cstr);
Eigen::VectorXd jntVelMax(ndof);
jntVelMax.setConstant(2.0);
jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);

With the tasks anc constraints created and added to the controller, we can begin the control loop.

12 Chapter 1. Motivation



ORCA Documentation, Release Alpago

Control Loop

The control loop is where the robot model is updated using the current state information from the real or simulated
robot, the control problem is formulated and solved, and the resultant joint torques are sent to the robot actuators.
For this example, we simply calculate the joint torques 𝜏 at each control time step and do nothing with them. This is
because we are not interacting with a real robot or a simulated robot.

double dt = 0.001;
double current_time = 0;

controller.activateTasksAndConstraints();

for (; current_time < 2.0; current_time +=dt)
{

// Here you can get the data from your robot (API is robot-specific)
// Something like :

// eigState.jointPos = myRealRobot.getJointPositions();
// eigState.jointVel = myRealRobot.getJointVelocities();

robot->setRobotState(eigState.jointPos,eigState.jointVel);
controller.update(current_time, dt);
if(controller.solutionFound())
{

const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();

// Send torques to the REAL robot (API is robot-specific)
// myRealRobot.set_joint_torques(trq_cmd);

}
else
{

// WARNING : Optimal solution is NOT found
// Perform some fallback strategy (see below)

}
}

First, since we are manually stepping the time, we initialize the current_time to zero and the dt=0.001.

The next important step is to activate the tasks and constraints: controller.
activateTasksAndConstraints();. This must be done before the controller update is called, or else
no solution will be found.

Now that the tasks and constraints are activated, we step into the control loop, which increments current_time
from 0.0 to 2.0 seconds by dt:

for (; current_time < 2.0; current_time +=dt)

At the begining of each loop, we must first retrieve the robot’s state information so that we can update our robot model
being used in the controller. This step depends on the robot-specific API being used and is up to the user to implement.

Note: In future examples we demonstrate how to do this with the Gazebo simulator.

After we get the appropriate state information from our robot (in this case, the joint positions and velocities)
we update the robot model: robot->setRobotState(eigState.jointPos,eigState.jointVel);
. With the model updated we now update the controller, controller.update(current_time, dt);.
The controller update first updates all of the tasks and constraints, then formulates the optimal control problem,
then solves said problem. If the controller found a solution to the optimal control problem then controller.

1.1. Table of Contents 13
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solutionFound() will return true and this tells you that you can get that result and use it to control your
robot. Here we extract the optimal control torques, const Eigen::VectorXd& trq_cmd = controller.
getJointTorqueCommand(); and then send them to our robot, using robot specific functions.

Note: In this example, we extract only the optimal torques, but you of course have access to the full solution:

// The whole optimal solution [AccFb, Acc, Tfb, T, eWrenches]
const Eigen::VectorXd& full_solution = controller.getSolution();
// The optimal joint torque command
const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();
// The optimal joint acceleration command
const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();

If the controller fails to find a solution to the problem then controller.solutionFound() returns false, and
you must implement some fallback strategy. By fallback, we mean some strategy to be used when we have no idea
what torques to send to the robot. A simple but effective strategy, is to simply brake the robot and stop its motion.

Important: If the optimal control problem has no solution it is generally because the tasks and constraints are ill-
defined and not because no solution exists. For this reason, one can implement fallback strategies which are slightly
more intelligent than simply stopping the robot. For example: - Compute KKT Solution and send to the robot (solu-
tions without inequality constraints) - PID around the current position (to slow to a halt) - Switch controllers - etc.

Shutting Things Down

Once we are finished using the controller and want to bring everything to a stop, we need to gradually deactivate the
tasks and constraints to avoid any erratic behaviors at the end of the motion. To do so, we start by deactivating the
tasks and constraints:

controller.deactivateTasksAndConstraints();

We then need to update the controller so the tasks and constraints can slowly ramp down to total deactivation.

while(!controller.tasksAndConstraintsDeactivated())
{

current_time += dt;
controller.update(current_time,dt);

}

Our controller is now deactivated and can be deleted or destroyed without any issues.

Typically at the end of the execution you would either stop the robot or put it into some robot-specific control mode
(position control, gravity compensation, etc.).

Conclusion

In this example you have seen all of the necessary steps to getting an ORCA controller up and running. In the next
examples we will look at more realistic examples where the controller interacts with a robot/simulation.

14 Chapter 1. Motivation
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Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41

42 #include <orca/orca.h>
43 using namespace orca::all;
44

45 int main(int argc, char const *argv[])
46 {
47 // Get the urdf file from the command line
48 if(argc < 2)
49 {
50 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
51 return -1;
52 }
53 std::string urdf_url(argv[1]);
54

(continues on next page)
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(continued from previous page)

55 // Parse logger level as --log_level (or -l) debug/warning etc
56 orca::utils::Logger::parseArgv(argc, argv);
57

58 // Create the kinematic model that is shared by everybody. Here you can pass a
→˓robot name

59 auto robot_model = std::make_shared<RobotModel>();
60

61 // If you don't pass a robot name, it is extracted from the urdf
62 robot_model->loadModelFromFile(urdf_url);
63

64 // All the transformations (end effector pose for example) will be expressed wrt
→˓this base frame

65 robot_model->setBaseFrame("base_link");
66

67 // Sets the world gravity (Optional)
68 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
69

70 // This is an helper function to store the whole state of the robot as eigen
→˓vectors/matrices. This class is totally optional, it is just meant to keep
→˓consistency for the sizes of all the vectors/matrices. You can use it to fill data
→˓from either real robot and simulated robot.

71 RobotState eigState;
72

73 // resize all the vectors/matrices to match the robot configuration
74 eigState.resize(robot_model->getNrOfDegreesOfFreedom());
75

76 // Set the initial state to zero (arbitrary). @note: here we only set q,qot
→˓because this example asserts we have a fixed base robot

77 eigState.jointPos.setZero();
78 eigState.jointVel.setZero();
79

80 // Set the first state to the robot
81 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
82 // Now is the robot is considered 'initialized'
83

84

85 // Instanciate an ORCA Controller
86 orca::optim::Controller controller(
87 "controller"
88 ,robot_model
89 ,orca::optim::ResolutionStrategy::OneLevelWeighted
90 ,QPSolverImplType::qpOASES
91 );
92 // Other ResolutionStrategy options: MultiLevelWeighted, Generalized
93

94

95 // Create the servo controller that the cartesian task needs
96 auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("servo_controller

→˓");
97

98 // Set the pose desired for the link_7
99 Eigen::Affine3d cart_pos_ref;

100

101 // Setting the translational components.
102 cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
103

104 // Rotation is done with a Matrix3x3 and it can be initialized in a few ways.
→˓Note that each of these methods produce equivalent Rotation matrices in this case.(continues on next page)
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105

106 // Example 1 : create a quaternion from Euler anglers ZYZ convention
107 Eigen::Quaterniond quat;
108 quat = Eigen::AngleAxisd(0, Eigen::Vector3d::UnitZ())
109 * Eigen::AngleAxisd(0, Eigen::Vector3d::UnitY())
110 * Eigen::AngleAxisd(0, Eigen::Vector3d::UnitZ());
111 cart_pos_ref.linear() = quat.toRotationMatrix();
112

113 // Example 2 : create a quaternion from RPY convention
114 cart_pos_ref.linear() = quatFromRPY(0,0,0).toRotationMatrix();
115

116 // Example 3 : create a quaternion from Kuka Convention
117 cart_pos_ref.linear() = quatFromKukaConvention(0,0,0).toRotationMatrix();
118

119 // Example 4 : use an Identity quaternion
120 cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();
121

122 // Set the desired cartesian velocity and acceleration to zero
123 Vector6d cart_vel_ref = Vector6d::Zero();
124 Vector6d cart_acc_ref = Vector6d::Zero();
125

126 // Now set the servoing PID
127 Vector6d P;
128 P << 1000, 1000, 1000, 10, 10, 10;
129 cart_acc_pid->pid()->setProportionalGain(P);
130 Vector6d D;
131 D << 100, 100, 100, 1, 1, 1;
132 cart_acc_pid->pid()->setDerivativeGain(D);
133

134 cart_acc_pid->setControlFrame("link_7");
135 // The desired values are set on the servo controller. Because cart_task->

→˓setDesired expects a cartesian acceleration. Which is computed automatically by the
→˓servo controller

136 cart_acc_pid->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_ref);
137

138 // Cartesian Task
139 auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
140 // Set the servo controller to the cartesian task
141 cart_task->setServoController(cart_acc_pid);
142

143 // Get the number of actuated joints
144 const int ndof = robot_model->getNrOfDegreesOfFreedom();
145

146 // Joint torque limit is usually given by the robot manufacturer
147 auto jnt_trq_cstr = controller.addConstraint<JointTorqueLimitConstraint>(

→˓"JointTorqueLimit");
148 Eigen::VectorXd jntTrqMax(ndof);
149 jntTrqMax.setConstant(200.0);
150 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
151

152 // Joint position limits are automatically extracted from the URDF model.
153 // Note that you can set them if you want. by simply doing jnt_pos_cstr->

→˓setLimits(jntPosMin,jntPosMax).
154 auto jnt_pos_cstr = controller.addConstraint<JointPositionLimitConstraint>(

→˓"JointPositionLimit");
155

156 // Joint velocity limits are usually given by the robot manufacturer
(continues on next page)
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157 auto jnt_vel_cstr = controller.addConstraint<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

158 Eigen::VectorXd jntVelMax(ndof);
159 jntVelMax.setConstant(2.0);
160 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);
161

162

163 double dt = 0.5;
164 double current_time = 0;
165

166 controller.activateTasksAndConstraints();
167

168

169 // If your robot's low level controller takes into account the gravity and
→˓coriolis torques already (Like with KUKA LWR) then you can tell the controller to
→˓remove these components from the torques computed by the solver. Setting them to
→˓false keeps the components in the solution (this is the default behavior).

170 controller.removeGravityTorquesFromSolution(true);
171 controller.removeCoriolisTorquesFromSolution(true);
172

173 // Now you can run the control loop
174 for (; current_time < 2.0; current_time +=dt)
175 {
176 // Here you can get the data from you REAL robot (API is robot-specific)
177 // Something like :
178 // eigState.jointPos = myRealRobot.getJointPositions();
179 // eigState.jointVel = myRealRobot.getJointVelocities();
180

181 // Now update the internal kinematic model with data from the REAL robot
182 std::cout << "Setting robot state to : \n"
183 << "Joint Pos : " << eigState.jointPos.transpose() << '\n'
184 << "Joint Vel : " << eigState.jointVel.transpose() << '\n';
185

186 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
187

188 // Step the controller + solve the internal optimal problem
189 std::cout << "Updating controller..." ;
190 controller.update(current_time, dt);
191 std::cout << "OK" << '\n';
192

193 // Do what you want with the solution
194 if(controller.solutionFound())
195 {
196 // The whole optimal solution [AccFb, Acc, Tfb, T, eWrenches]
197 const Eigen::VectorXd& full_solution = controller.getSolution();
198 // The optimal joint torque command
199 const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();
200 // The optimal joint acceleration command
201 const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();
202

203 // Send torques to the REAL robot (API is robot-specific)
204 //real_tobot->set_joint_torques(trq_cmd);
205 }
206 else
207 {
208 // WARNING : Optimal solution is NOT found
209 // Switching to a fallback strategy

(continues on next page)
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210 // Typical are :
211 // - Stop the robot (robot-specific method)
212 // - Compute KKT Solution and send to the robot (dangerous)
213 // - PID around the current position (dangerous)
214

215 // trq = controller.computeKKTTorques();
216 // Send torques to the REAL robot (API is robot-specific)
217 // real_tobot->set_joint_torques(trq_cmd);
218 }
219 }
220

221 // Print the last computed solution (just for fun)
222 const Eigen::VectorXd& full_solution = controller.getSolution();
223 const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();
224 const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();
225 std::cout << "Full solution : " << full_solution.transpose() << '\n';
226 std::cout << "Joint Acceleration command : " << trq_acc.transpose() << '\n';
227 std::cout << "Joint Torque command : " << trq_cmd.transpose() << '\n';
228

229 // At some point you want to close the controller nicely
230 controller.deactivateTasksAndConstraints();
231

232

233 // Let all the tasks ramp down to zero
234 while(!controller.tasksAndConstraintsDeactivated())
235 {
236 current_time += dt;
237 controller.update(current_time,dt);
238 }
239

240 // All objets will be destroyed here
241 return 0;
242 }

Simulating the controller performance

Note: The source code for this example can be found in [orca_root]/examples/basic/
02-simulating_results.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/
basic/02-simulating_results.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

(continues on next page)
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10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 using namespace orca::all;
43

44

45

46 int main(int argc, char const *argv[])
47 {
48 if(argc < 2)
49 {
50 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
51 return -1;
52 }
53 std::string urdf_url(argv[1]);
54

55 orca::utils::Logger::parseArgv(argc, argv);
56

57 auto robot_model = std::make_shared<RobotModel>();
58 robot_model->loadModelFromFile(urdf_url);
59 robot_model->setBaseFrame("base_link");
60 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
61 RobotState eigState;
62 eigState.resize(robot_model->getNrOfDegreesOfFreedom());
63 eigState.jointPos.setZero();
64 eigState.jointVel.setZero();
65 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);

(continues on next page)
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66

67 orca::optim::Controller controller(
68 "controller"
69 ,robot_model
70 ,orca::optim::ResolutionStrategy::OneLevelWeighted
71 ,QPSolverImplType::qpOASES
72 );
73

74 // Create the servo controller that the cartesian task needs
75 auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("servo_controller

→˓");
76 // Now set the servoing PID
77 Vector6d P;
78 P << 1000, 1000, 1000, 10, 10, 10;
79 cart_acc_pid->pid()->setProportionalGain(P);
80 Vector6d D;
81 D << 100, 100, 100, 1, 1, 1;
82 cart_acc_pid->pid()->setDerivativeGain(D);
83

84 cart_acc_pid->setControlFrame("link_7");
85

86 Eigen::Affine3d cart_pos_ref;
87 cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
88 cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();
89

90 // Set the desired cartesian velocity and acceleration to zero
91 Vector6d cart_vel_ref = Vector6d::Zero();
92 Vector6d cart_acc_ref = Vector6d::Zero();
93

94 // The desired values are set on the servo controller. Because cart_task->
→˓setDesired expects a cartesian acceleration. Which is computed automatically by the
→˓servo controller

95 cart_acc_pid->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_ref);
96 // Set the servo controller to the cartesian task
97 auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
98 cart_task->setServoController(cart_acc_pid);
99

100 // ndof
101 const int ndof = robot_model->getNrOfDegreesOfFreedom();
102

103 auto jnt_trq_cstr = controller.addConstraint<JointTorqueLimitConstraint>(
→˓"JointTorqueLimit");

104 Eigen::VectorXd jntTrqMax(ndof);
105 jntTrqMax.setConstant(200.0);
106 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
107

108 auto jnt_pos_cstr = controller.addConstraint<JointPositionLimitConstraint>(
→˓"JointPositionLimit");

109

110 auto jnt_vel_cstr = controller.addConstraint<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

111 Eigen::VectorXd jntVelMax(ndof);
112 jntVelMax.setConstant(2.0);
113 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);
114

115

116 controller.activateTasksAndConstraints();
(continues on next page)
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117 // for each task, it calls task->activate(), that can call onActivationCallback()
→˓if it is set.

118 // To set it :
119 // task->setOnActivationCallback([&]()
120 // {
121 // // Do some initialisation here
122 // });
123 // Note : you need to set it BEFORE calling
124 // controller.activateTasksAndConstraints();
125

126

127

128

129

130 double dt = 0.001;
131 double current_time = 0.0;
132 Eigen::VectorXd trq_cmd(ndof);
133 Eigen::VectorXd acc_new(ndof);
134

135 controller.update(current_time, dt);
136 current_time += dt;
137

138

139 controller.print();
140

141 std::cout << "\n\n\n" << '\n';
142 std::cout << "====================================" << '\n';
143 //std::cout << "Initial State:\n" << cart_task->servoController()->

→˓getCurrentCartesianPose() << '\n';
144 std::cout << "Desired State:\n" << cart_pos_ref.matrix() << '\n';
145 std::cout << "====================================" << '\n';
146 std::cout << "\n\n\n" << '\n';
147 std::cout << "Begining Simulation..." << '\n';
148

149 int print_counter = 0;
150 for (; current_time < 10.0; current_time +=dt)
151 {
152

153

154 if(print_counter == 100)
155 {
156 std::cout << "Task position at t = " << current_time << "\t---\t" << cart_

→˓acc_pid->getCurrentCartesianPose().block(0,3,3,1).transpose() << '\n';
157 print_counter = 0;
158 }
159 ++print_counter;
160

161 controller.update(current_time, dt);
162

163 if(controller.solutionFound())
164 {
165 trq_cmd = controller.getJointTorqueCommand();
166 }
167 else
168 {
169 std::cout << "[warning] Didn't find a solution. Stopping simulation." <<

→˓'\n';
(continues on next page)
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170 break;
171 }
172

173 acc_new = robot_model->getMassMatrix().ldlt().solve(trq_cmd - robot_model->
→˓getJointGravityAndCoriolisTorques());

174

175 eigState.jointPos += eigState.jointVel * dt + ((acc_new*dt*dt)/2);
176 eigState.jointVel += acc_new * dt;
177

178 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
179

180 }
181 std::cout << "Simulation finished." << '\n';
182 std::cout << "\n\n\n" << '\n';
183 std::cout << "====================================" << '\n';
184 //std::cout << "Final State:\n" << cart_task->servoController()->

→˓getCurrentCartesianPose() << '\n';
185 //std::cout << "Position error:\n" << cart_task->servoController()->

→˓getCurrentCartesianPose().block(0,3,3,1) - cart_pos_ref.translation() << '\n';
186

187

188

189

190 // All objets will be destroyed here
191 return 0;
192 }

1.1.8 Intermediate

An introduction to the ORCA callback system

Note: The source code for this example can be found in [orca_root]/examples/intermediate/
02-using_callbacks.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/
intermediate/01-using_callbacks.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //

(continues on next page)
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15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <chrono>
43 using namespace orca::all;
44

45 class TaskMonitor {
46 private:
47 bool is_activated_ = false;
48 bool is_deactivated_ = false;
49

50

51 public:
52 TaskMonitor ()
53 {
54 std::cout << "TaskMonitor class constructed." << '\n';
55 }
56 bool isActivated(){return is_activated_;}
57 bool isDeactivated(){return is_deactivated_;}
58

59 void onActivation()
60 {
61 std::cout << "[TaskMonitor] Called 'onActivation' callback." << '\n';
62 }
63

64 void onActivated()
65 {
66 std::cout << "[TaskMonitor] Called 'onActivated' callback." << '\n';
67 is_activated_ = true;
68 }
69

70 void onUpdateEnd(double current_time, double dt)
71 {

(continues on next page)
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72 std::cout << "[TaskMonitor] Called 'onUpdateBegin' callback." << '\n';
73 std::cout << " >> current time: " << current_time << '\n';
74 std::cout << " >> dt: " << dt << '\n';
75 }
76

77 void onUpdateBegin(double current_time, double dt)
78 {
79 std::cout << "[TaskMonitor] Called 'onUpdateEnd' callback." << '\n';
80 std::cout << " >> current time: " << current_time << '\n';
81 std::cout << " >> dt: " << dt << '\n';
82 }
83 void onDeactivation()
84 {
85 std::cout << "[TaskMonitor] Called 'onDeactivation' callback." << '\n';
86 }
87

88 void onDeactivated()
89 {
90 std::cout << "[TaskMonitor] Called 'onDeactivated' callback." << '\n';
91 is_deactivated_ = true;
92 }
93 };
94

95

96

97

98 int main(int argc, char const *argv[])
99 {

100 if(argc < 2)
101 {
102 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
103 return -1;
104 }
105 std::string urdf_url(argv[1]);
106

107 orca::utils::Logger::parseArgv(argc, argv);
108

109 auto robot_model = std::make_shared<RobotModel>();
110 robot_model->loadModelFromFile(urdf_url);
111 robot_model->setBaseFrame("base_link");
112 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
113 RobotState eigState;
114 eigState.resize(robot_model->getNrOfDegreesOfFreedom());
115 eigState.jointPos.setZero();
116 eigState.jointVel.setZero();
117 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
118

119 orca::optim::Controller controller(
120 "controller"
121 ,robot_model
122 ,orca::optim::ResolutionStrategy::OneLevelWeighted
123 ,QPSolverImplType::qpOASES
124 );
125

126 auto cart_task = std::make_shared<CartesianTask>("CartTask_EE");
127 controller.addTask(cart_task);

(continues on next page)
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128 cart_task->setControlFrame("link_7"); //
129 Eigen::Affine3d cart_pos_ref;
130 cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
131 cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();
132 Vector6d cart_vel_ref = Vector6d::Zero();
133 Vector6d cart_acc_ref = Vector6d::Zero();
134

135 Vector6d P;
136 P << 1000, 1000, 1000, 10, 10, 10;
137 //cart_task->servoController()->pid()->setProportionalGain(P);
138 Vector6d D;
139 D << 100, 100, 100, 1, 1, 1;
140 //cart_task->servoController()->pid()->setDerivativeGain(D);
141

142 //cart_task->servoController()->setDesired(cart_pos_ref.matrix(),cart_vel_ref,
→˓cart_acc_ref);

143

144 const int ndof = robot_model->getNrOfDegreesOfFreedom();
145

146 auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit
→˓");

147 controller.addConstraint(jnt_trq_cstr);
148 Eigen::VectorXd jntTrqMax(ndof);
149 jntTrqMax.setConstant(200.0);
150 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
151

152 auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>(
→˓"JointPositionLimit");

153 controller.addConstraint(jnt_pos_cstr);
154

155 auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

156 controller.addConstraint(jnt_vel_cstr);
157 Eigen::VectorXd jntVelMax(ndof);
158 jntVelMax.setConstant(2.0);
159 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);
160

161 double dt = 0.1;
162 double current_time = 0.0;
163 int delay_ms = 500;
164

165 // The good stuff...
166

167 auto task_monitor = std::make_shared<TaskMonitor>();
168

169 cart_task->onActivationCallback(std::bind(&TaskMonitor::onActivation, task_
→˓monitor));

170 cart_task->onActivatedCallback(std::bind(&TaskMonitor::onActivated, task_
→˓monitor));

171 cart_task->onComputeBeginCallback(std::bind(&TaskMonitor::onUpdateBegin, task_
→˓monitor, std::placeholders::_1, std::placeholders::_2));

172 cart_task->onComputeEndCallback(std::bind(&TaskMonitor::onUpdateEnd, task_monitor,
→˓ std::placeholders::_1, std::placeholders::_2));

173 cart_task->onDeactivationCallback(std::bind(&TaskMonitor::onDeactivation, task_
→˓monitor));

174 cart_task->onDeactivatedCallback(std::bind(&TaskMonitor::onDeactivated, task_
→˓monitor));

(continues on next page)
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175

176 std::cout << "[main] Activating tasks and constraints." << '\n';
177 controller.activateTasksAndConstraints();
178 std::this_thread::sleep_for(std::chrono::milliseconds(delay_ms));
179

180 std::cout << "[main] Starting 'RUN' while loop." << '\n';
181 while(!task_monitor->isActivated()) // Run 10 times.
182 {
183 std::cout << "[main] 'RUN' while loop. Current time: " << current_time << '\n

→˓';
184 controller.update(current_time, dt);
185 current_time +=dt;
186 std::this_thread::sleep_for(std::chrono::milliseconds(delay_ms));
187 }
188 std::cout << "[main] Exiting 'RUN' while loop." << '\n';
189

190 std::cout << "-----------------\n";
191

192 std::cout << "[main] Deactivating tasks and constraints." << '\n';
193 controller.deactivateTasksAndConstraints();
194 std::this_thread::sleep_for(std::chrono::milliseconds(delay_ms));
195

196 std::cout << "[main] Starting 'DEACTIVATION' while loop." << '\n';
197

198 while(!task_monitor->isDeactivated())
199 {
200 std::cout << "[main] 'DEACTIVATION' while loop. Current time: " << current_

→˓time << '\n';
201 controller.update(current_time, dt);
202 current_time += dt;
203 std::this_thread::sleep_for(std::chrono::milliseconds(delay_ms));
204 }
205 std::cout << "[main] Exiting 'DEACTIVATION' while loop." << '\n';
206

207

208 std::cout << "[main] Exiting main()." << '\n';
209 return 0;
210 }

Using lambda functions in the callbacks

Note: The source code for this example can be found in [orca_root]/examples/intermediate/
02-using_lambda_callbacks.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/
examples/intermediate/02-using_lambda_callbacks.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
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5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 using namespace orca::all;
43

44 class MinJerkPositionTrajectory {
45 private:
46 Eigen::Vector3d alpha_, sp_, ep_;
47 double duration_ = 0.0;
48 double start_time_ = 0.0;
49 bool first_call_ = true;
50 bool traj_finished_ = false;
51

52

53

54 public:
55 MinJerkPositionTrajectory (double duration)
56 : duration_(duration)
57 {
58 }
59

60 bool isTrajectoryFinished(){return traj_finished_;}
61

(continues on next page)
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62 void resetTrajectory(const Eigen::Vector3d& start_position, const Eigen::Vector3d&
→˓ end_position)

63 {
64 sp_ = start_position;
65 ep_ = end_position;
66 alpha_ = ep_ - sp_;
67 first_call_ = true;
68 traj_finished_ = false;
69 }
70

71 void getDesired(double current_time, Eigen::Vector3d& p, Eigen::Vector3d& v,
→˓Eigen::Vector3d& a)

72 {
73 if(first_call_)
74 {
75 start_time_ = current_time;
76 first_call_ = false;
77 }
78 double tau = (current_time - start_time_) / duration_;
79 if(tau >= 1.0)
80 {
81 p = ep_;
82 v = Eigen::Vector3d::Zero();
83 a = Eigen::Vector3d::Zero();
84

85 traj_finished_ = true;
86 return;
87 }
88 p = sp_ + alpha_ * ( 10*pow(tau,3.0) - 15*pow(tau,4.

→˓0) + 6*pow(tau,5.0) );
89 v = Eigen::Vector3d::Zero() + alpha_ * ( 30*pow(tau,2.0) - 60*pow(tau,3.0) +

→˓30*pow(tau,4.0) );
90 a = Eigen::Vector3d::Zero() + alpha_ * ( 60*pow(tau,1.0) - 180*pow(tau,2.0) +

→˓120*pow(tau,3.0) );
91 }
92 };
93

94

95

96

97 int main(int argc, char const *argv[])
98 {
99 if(argc < 2)

100 {
101 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
102 return -1;
103 }
104 std::string urdf_url(argv[1]);
105

106 orca::utils::Logger::parseArgv(argc, argv);
107

108 auto robot_model = std::make_shared<RobotModel>();
109 robot_model->loadModelFromFile(urdf_url);
110 robot_model->setBaseFrame("base_link");
111 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
112 RobotState eigState;

(continues on next page)

1.1. Table of Contents 29



ORCA Documentation, Release Alpago

(continued from previous page)

113 eigState.resize(robot_model->getNrOfDegreesOfFreedom());
114 eigState.jointPos.setZero();
115 eigState.jointVel.setZero();
116 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
117

118 orca::optim::Controller controller(
119 "controller"
120 ,robot_model
121 ,orca::optim::ResolutionStrategy::OneLevelWeighted
122 ,QPSolverImplType::qpOASES
123 );
124

125 auto cart_task = std::make_shared<CartesianTask>("CartTask_EE");
126 controller.addTask(cart_task);
127 cart_task->setControlFrame("link_7"); //
128 Eigen::Affine3d cart_pos_ref;
129 cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
130 cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();
131 Vector6d cart_vel_ref = Vector6d::Zero();
132 Vector6d cart_acc_ref = Vector6d::Zero();
133

134 Vector6d P;
135 P << 1000, 1000, 1000, 10, 10, 10;
136 //cart_task->servoController()->pid()->setProportionalGain(P);
137 Vector6d D;
138 D << 100, 100, 100, 1, 1, 1;
139 //cart_task->servoController()->pid()->setDerivativeGain(D);
140

141

142 const int ndof = robot_model->getNrOfDegreesOfFreedom();
143

144 auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit
→˓");

145 controller.addConstraint(jnt_trq_cstr);
146 Eigen::VectorXd jntTrqMax(ndof);
147 jntTrqMax.setConstant(200.0);
148 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
149

150 auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>(
→˓"JointPositionLimit");

151 controller.addConstraint(jnt_pos_cstr);
152

153 auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

154 controller.addConstraint(jnt_vel_cstr);
155 Eigen::VectorXd jntVelMax(ndof);
156 jntVelMax.setConstant(2.0);
157 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);
158

159 double dt = 0.001;
160 double current_time = 0.0;
161

162 // The good stuff...
163

164 MinJerkPositionTrajectory traj(5.0);
165 int traj_loops = 0;
166 bool exit_control_loop = true;

(continues on next page)
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167 Eigen::Vector3d start_position, end_position;
168

169

170 cart_task->onActivationCallback([](){
171 std::cout << "Activating CartesianTask..." << '\n';
172 });
173

174 cart_task->onActivatedCallback([&](){
175 //start_position = cart_task->servoController()->getCurrentCartesianPose().

→˓block(0,3,3,1);
176 end_position = cart_pos_ref.translation();
177 traj.resetTrajectory(start_position, end_position);
178 std::cout << "CartesianTask activated. Begining trajectory." << '\n';
179 });
180

181 cart_task->onComputeBeginCallback([&](double current_time, double dt){
182 Eigen::Vector3d p, v, a;
183 traj.getDesired(current_time, p, v, a);
184 cart_pos_ref.translation() = p;
185 cart_vel_ref.head(3) = v;
186 cart_acc_ref.head(3) = a;
187 //cart_task->servoController()->setDesired(cart_pos_ref.matrix(),cart_vel_ref,

→˓cart_acc_ref);
188 });
189

190 cart_task->onComputeEndCallback([&](double current_time, double dt){
191 if (traj.isTrajectoryFinished() )
192 {
193 if (traj_loops < 4)
194 {
195 traj.resetTrajectory(end_position, start_position);
196 std::cout << "Changing trajectory direction." << '\n';
197 ++traj_loops;
198 }
199 else
200 {
201 std::cout << "Trajectory looping finished." << '\n';
202 exit_control_loop = true;
203 }
204 }
205 });
206

207 cart_task->onDeactivationCallback([](){
208 std::cout << "Deactivating task." << '\n';
209 });
210

211 cart_task->onDeactivatedCallback([](){
212 std::cout << "CartesianTask deactivated. Stopping controller" << '\n';
213 });
214

215 controller.activateTasksAndConstraints();
216

217 // Control loop
218 while(traj_loops < 4)
219 {
220 controller.update(current_time, dt);
221 current_time +=dt;
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222 }
223 std::cout << "Out of control loop." << '\n';
224

225 controller.deactivateTasksAndConstraints();
226

227

228 while(!controller.tasksAndConstraintsDeactivated())
229 {
230 controller.update(current_time, dt);
231 current_time += dt;
232 }
233 return 0;
234 }

1.1.9 Gazebo

Simulating a single robot

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
01-single_robot.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/gazebo/
01-single_robot.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
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28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/gazebo/GazeboServer.h>
42 #include <orca/gazebo/GazeboModel.h>
43

44 using namespace orca::gazebo;
45

46 int main(int argc, char** argv)
47 {
48 // Get the urdf file from the command line
49 if(argc < 2)
50 {
51 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf" << "\n";
52 return -1;
53 }
54 std::string urdf_url(argv[1]);
55

56 // Instanciate the gazebo server with de dedfault empty world
57 // This is equivalent to GazeboServer gz("worlds/empty.world")
58 GazeboServer s;
59 // Insert a model onto the server and create the GazeboModel from the return value
60 // You can also set the initial pose, and override the name in the URDF
61 auto m = GazeboModel(s.insertModelFromURDFFile(urdf_url));
62

63 // This is how you can get the full state of the robot
64 std::cout << "Model \'" << m.getName() << "\' State :\n" << '\n';
65 std::cout << "- Gravity " << m.getGravity().transpose()

→˓ << '\n';
66 std::cout << "- Base velocity\n" << m.getBaseVelocity().transpose()

→˓ << '\n';
67 std::cout << "- Tworld->base\n" << m.getWorldToBaseTransform().

→˓matrix() << '\n';
68 std::cout << "- Joint positions " << m.getJointPositions().transpose()

→˓ << '\n';
69 std::cout << "- Joint velocities " << m.getJointVelocities().transpose()

→˓ << '\n';
70 std::cout << "- Joint external torques " << m.getJointExternalTorques().

→˓transpose() << '\n';
71 std::cout << "- Joint measured torques " << m.getJointMeasuredTorques().

→˓transpose() << '\n';
72

73 // You can optionally register a callback that will be called
74 // after every WorldUpdateEnd, so the internal gazebo model is updated
75 // and you can get the full state (q,qdot,Tworld->base, etc)
76 m.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double dt)
77 {

(continues on next page)
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78 std::cout << "[" << m.getName() << "]" << '\n'
79 << "- iteration " << n_iter << '\n'
80 << "- current time " << current_time << '\n'
81 << "- dt " << dt << '\n';
82 // Example : get the minimal state
83 const Eigen::VectorXd& q = m.getJointPositions();
84 const Eigen::VectorXd& qdot = m.getJointVelocities();
85

86 std::cout << "ExtTrq " << m.getJointExternalTorques().transpose() << '\n';
87 std::cout << "MeaTrq " << m.getJointMeasuredTorques().transpose() << '\n';
88 });
89

90 // Run the main simulation loop.
91 // This is a blocking call that runs the simulation steps
92 // It can be stopped by CTRL+C
93 // You can optionally add a callback that happends after WorldUpdateEnd
94 s.run();
95 return 0;
96 }

Simulating multiple robots

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
02-multi_robot.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/gazebo/
02-multi_robot.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
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24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/gazebo/GazeboServer.h>
42 #include <orca/gazebo/GazeboModel.h>
43

44 using namespace orca::gazebo;
45 using namespace Eigen;
46

47 int main(int argc, char** argv)
48 {
49 // Get the urdf file from the command line
50 if(argc < 2)
51 {
52 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf" << "\n";
53 return -1;
54 }
55 std::string urdf_url(argv[1]);
56

57 // Instanciate the gazebo server with de dedfault empty world
58 // This is equivalent to GazeboServer gz("worlds/empty.world")
59 GazeboServer gz_server;
60

61 // Insert a model onto the server and create the GazeboModel from the return value
62 // You can also set the initial pose, and override the name in the URDF
63 auto gz_model_one = GazeboModel(gz_server.insertModelFromURDFFile(urdf_url
64 ,Vector3d(-2,0,0)
65 ,quatFromRPY(0,0,0)
66 ,"one"));
67

68 // Insert a second model with a different pose and a different name
69 auto gz_model_two = GazeboModel(gz_server.insertModelFromURDFFile(urdf_url
70 ,Vector3d(2,0,0)
71 ,quatFromRPY(0,0,0)
72 ,"two"));
73

74 // You can optionally register a callback for each GazeboModel so you can do
→˓individual updates on it

75 // The function is called after every WorldUpdateEnd, so the internal gazebo
→˓model is updated

76 // and you can get the full state (q,qdot,Tworld->base, etc)
77 gz_model_two.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,

→˓double dt)
(continues on next page)
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78 {
79 std::cout << "gz_model_two \'" << gz_model_two.getName() << "\' callback " <<

→˓'\n'
80 << "- iteration " << n_iter << '\n'
81 << "- current time " << current_time << '\n'
82 << "- dt " << dt << '\n';
83 // Example : get the joint positions
84 // gz_model_two.getJointPositions()
85 });
86

87 // Run the main simulation loop.
88 // This is a blocking call that runs the simulation steps
89 // It can be stopped by CTRL+C
90 // You can optionally add a callback that happends after WorldUpdateEnd
91 gz_server.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double

→˓dt)
92 {
93 std::cout << "GazeboServer callback " << '\n'
94 << "- iteration " << n_iter << '\n'
95 << "- current time " << current_time << '\n'
96 << "- dt " << dt << '\n';
97 });
98 gz_server.run();
99 return 0;

100 }

Set robot state

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
03-set_robot_state.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/
gazebo/03-set_robot_state.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the

(continues on next page)
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18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <orca/gazebo/GazeboServer.h>
43 #include <orca/gazebo/GazeboModel.h>
44

45 using namespace orca::all;
46 using namespace orca::gazebo;
47

48 int main(int argc, char** argv)
49 {
50 // Get the urdf file from the command line
51 if(argc < 2)
52 {
53 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf" << "\n";
54 return -1;
55 }
56 std::string urdf_url(argv[1]);
57

58 // Instanciate the gazebo server with de dedfault empty world
59 GazeboServer gz_server(argc,argv);
60 // This is equivalent to GazeboServer gz("worlds/empty.world")
61 // Insert a model onto the server and create the GazeboModel from the return value
62 // You can also set the initial pose, and override the name in the URDF
63 auto gz_model = GazeboModel(gz_server.insertModelFromURDFFile(urdf_url));
64

65 // Create an ORCA robot
66 auto robot_model = std::make_shared<RobotModel>();
67 robot_model->loadModelFromFile(urdf_url);
68 robot_model->print();
69

70 // Update the robot on at every iteration
71 gz_model.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double

→˓dt)
72 {
73 std::cout << "Gazebo iteration " << n_iter << " current time: " << current_

→˓time << " dt: " << dt << '\n'; (continues on next page)
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74

75 robot_model->setRobotState(gz_model.getWorldToBaseTransform().matrix()
76 ,gz_model.getJointPositions()
77 ,gz_model.getBaseVelocity()
78 ,gz_model.getJointVelocities()
79 ,gz_model.getGravity()
80 );
81 });
82

83 // Run the main simulation loop.
84 // This is a blocking call that runs the simulation steps
85 // It can be stopped by CTRL+C
86 // You can optionally add a callback that happends after WorldUpdateEnd
87 gz_server.run();
88 return 0;
89 }

Set robot state with gravity compensation

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
04-set_robot_state_gravity_compensation.cc, or alternatively on github at: https://github.com/
syroco/orca/blob/dev/examples/gazebo/04-set_robot_state_gravity_compensation.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
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27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <orca/gazebo/GazeboServer.h>
43 #include <orca/gazebo/GazeboModel.h>
44

45 using namespace orca::all;
46 using namespace orca::gazebo;
47

48 int main(int argc, char** argv)
49 {
50 // Get the urdf file from the command line
51 if(argc < 2)
52 {
53 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf" << "\n";
54 return -1;
55 }
56 std::string urdf_url(argv[1]);
57

58 // Instanciate the gazebo server with de dedfault empty world
59 GazeboServer gz_server(argc,argv);
60 // This is equivalent to GazeboServer gz("worlds/empty.world")
61 // Insert a model onto the server and create the GazeboModel from the return value
62 // You can also set the initial pose, and override the name in the URDF
63 auto gz_model = GazeboModel(gz_server.insertModelFromURDFFile(urdf_url));
64

65 // Create an ORCA robot
66 auto robot_model = std::make_shared<RobotModel>();
67 robot_model->loadModelFromFile(urdf_url);
68 robot_model->print();
69

70 // Set the gazebo model init pose
71 // auto joint_names = robot_model->getJointNames();
72 // std::vector<double> init_joint_positions(robot_model->

→˓getNrOfDegreesOfFreedom(),0);
73

74 // gz_model.setModelConfiguration(joint_names,init_joint_positions);
75 // or like this
76 // gz_model.setModelConfiguration({"joint_2","joint_5"},{1.5,0.0});
77

78 // Update the robot on at every iteration
79 gz_model.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double

→˓dt)
80 {
81 robot_model->setRobotState(gz_model.getWorldToBaseTransform().matrix()

(continues on next page)
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82 ,gz_model.getJointPositions()
83 ,gz_model.getBaseVelocity()
84 ,gz_model.getJointVelocities()
85 ,gz_model.getGravity()
86 );
87 gz_model.setJointGravityTorques(robot_model->getJointGravityTorques());
88 });
89

90 // Run the main simulation loop.
91 // This is a blocking call that runs the simulation steps
92 // It can be stopped by CTRL+C
93 // You can optionally add a callback that happends after WorldUpdateEnd
94 std::cout << "Simulation running... (GUI with \'gzclient\')" << "\n";
95 gz_server.run();
96 return 0;
97 }

Using Gazebo to simulate an ORCA controller

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
05-orca_gazebo.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/gazebo/
05-orca_gazebo.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
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27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <orca/gazebo/GazeboServer.h>
43 #include <orca/gazebo/GazeboModel.h>
44

45 using namespace orca::all;
46 using namespace orca::gazebo;
47

48

49

50 int main(int argc, char const *argv[])
51 {
52 if(argc < 2)
53 {
54 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
55 return -1;
56 }
57 std::string urdf_url(argv[1]);
58

59 GazeboServer gz_server(argc,argv);
60 auto gz_model = GazeboModel(gz_server.insertModelFromURDFFile(urdf_url));
61 gz_model.setModelConfiguration( { "joint_0", "joint_3","joint_5"} , {1.0,-M_PI/2.,

→˓M_PI/2.});
62

63 orca::utils::Logger::parseArgv(argc, argv);
64

65 auto robot_model = std::make_shared<RobotModel>();
66 robot_model->loadModelFromFile(urdf_url);
67 robot_model->setBaseFrame("base_link");
68 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
69

70

71 orca::optim::Controller controller(
72 "controller"
73 ,robot_model
74 ,orca::optim::ResolutionStrategy::OneLevelWeighted
75 ,QPSolverImplType::qpOASES
76 );
77

78

79 auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("servo_controller
→˓");

80 cart_acc_pid->pid()->setProportionalGain({1000, 1000, 1000, 10, 10, 10});
(continues on next page)
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81 cart_acc_pid->pid()->setDerivativeGain({100, 100, 100, 1, 1, 1});
82 cart_acc_pid->setControlFrame("link_7");
83

84 auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
85 cart_task->setServoController(cart_acc_pid);
86

87 const int ndof = robot_model->getNrOfDegreesOfFreedom();
88

89 auto jnt_trq_cstr = controller.addConstraint<JointTorqueLimitConstraint>(
→˓"JointTorqueLimit");

90 Eigen::VectorXd jntTrqMax(ndof);
91 jntTrqMax.setConstant(200.0);
92 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
93

94 auto jnt_pos_cstr = controller.addConstraint<JointPositionLimitConstraint>(
→˓"JointPositionLimit");

95

96 auto jnt_vel_cstr = controller.addConstraint<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

97 jnt_vel_cstr->setLimits(Eigen::VectorXd::Constant(ndof,-2.0),
→˓Eigen::VectorXd::Constant(ndof,2.0));

98

99

100 // Lets decide that the robot is gravity compensated
101 // So we need to remove G(q) from the solution
102 controller.removeGravityTorquesFromSolution(true);
103 gz_model.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double

→˓dt)
104 {
105 robot_model->setRobotState(gz_model.getWorldToBaseTransform().matrix()
106 ,gz_model.getJointPositions()
107 ,gz_model.getBaseVelocity()
108 ,gz_model.getJointVelocities()
109 ,gz_model.getGravity()
110 );
111 // Compensate the gravity at least
112 gz_model.setJointGravityTorques(robot_model->getJointGravityTorques());
113 // All tasks need the robot to be initialized during the activation phase
114 if(n_iter == 1)
115 controller.activateTasksAndConstraints();
116

117 controller.update(current_time, dt);
118

119 if(controller.solutionFound())
120 {
121 gz_model.setJointTorqueCommand( controller.getJointTorqueCommand() );
122 }
123 else
124 {
125 gz_model.setBrakes(true);
126 }
127 });
128

129 std::cout << "Simulation running... (GUI with \'gzclient\')" << "\n";
130

131 // If you want to pause the simulation before starting it uncomment these lines
132 // Note that to unlock it either open 'gzclient' and click on the play button

(continues on next page)
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133 // Or open a terminal and type 'gz world -p false'
134 //
135 std::cout << "Gazebo is paused, open gzclient to unpause it or type 'gz world -p

→˓false' in a new terminal" << '\n';
136 gazebo::event::Events::pause.Signal(true);
137

138 gz_server.run();
139 return 0;
140 }

Minimum jerk Cartesian trajectory following

Note: The source code for this example can be found in [orca_root]/examples/gazebo/
06-trajectory_following.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/
examples/gazebo/06-trajectory_following.cc

Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
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34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <orca/gazebo/GazeboServer.h>
43 #include <orca/gazebo/GazeboModel.h>
44

45 using namespace orca::all;
46 using namespace orca::gazebo;
47

48 class MinJerkPositionTrajectory {
49 private:
50 Eigen::Vector3d alpha_, sp_, ep_;
51 double duration_ = 0.0;
52 double start_time_ = 0.0;
53 bool first_call_ = true;
54 bool traj_finished_ = false;
55

56 public:
57 MinJerkPositionTrajectory (double duration)
58 : duration_(duration)
59 {
60 }
61

62 bool isTrajectoryFinished(){return traj_finished_;}
63

64 void resetTrajectory(const Eigen::Vector3d& start_position, const Eigen::Vector3d&
→˓ end_position)

65 {
66 sp_ = start_position;
67 ep_ = end_position;
68 alpha_ = ep_ - sp_;
69 first_call_ = true;
70 traj_finished_ = false;
71 }
72

73 void getDesired(double current_time, Eigen::Vector3d& p, Eigen::Vector3d& v,
→˓Eigen::Vector3d& a)

74 {
75 if(first_call_)
76 {
77 start_time_ = current_time;
78 first_call_ = false;
79 }
80 double tau = (current_time - start_time_) / duration_;
81 if(tau >= 1.0)
82 {
83 p = ep_;
84 v = Eigen::Vector3d::Zero();
85 a = Eigen::Vector3d::Zero();
86

87 traj_finished_ = true;
88 return;
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89 }
90 p = sp_ + alpha_ * ( 10*pow(tau,3.0) - 15*pow(tau,4.0) + 6*pow(tau,5.0) );
91 v = Eigen::Vector3d::Zero() + alpha_ * ( 30*pow(tau,2.0) - 60*pow(tau,3.0) +

→˓30*pow(tau,4.0) );
92 a = Eigen::Vector3d::Zero() + alpha_ * ( 60*pow(tau,1.0) - 180*pow(tau,2.0) +

→˓120*pow(tau,3.0) );
93 }
94 };
95

96

97 int main(int argc, char const *argv[])
98 {
99 if(argc < 2)

100 {
101 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
102 return -1;
103 }
104 std::string urdf_url(argv[1]);
105

106 orca::utils::Logger::parseArgv(argc, argv);
107

108 auto robot_model = std::make_shared<RobotModel>();
109 robot_model->loadModelFromFile(urdf_url);
110 robot_model->setBaseFrame("base_link");
111 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));
112

113 orca::optim::Controller controller(
114 "controller"
115 ,robot_model
116 ,orca::optim::ResolutionStrategy::OneLevelWeighted
117 ,QPSolverImplType::qpOASES
118 );
119

120 const int ndof = robot_model->getNrOfDegreesOfFreedom();
121

122

123 auto joint_pos_task = controller.addTask<JointAccelerationTask>("JointPosTask");
124

125 // Eigen::VectorXd P(ndof);
126 // P.setConstant(100);
127 joint_pos_task->pid()->setProportionalGain(Eigen::VectorXd::Constant(ndof, 100));
128

129 // Eigen::VectorXd I(ndof);
130 // I.setConstant(1);
131 joint_pos_task->pid()->setDerivativeGain(Eigen::VectorXd::Constant(ndof, 1));
132

133 // Eigen::VectorXd windupLimit(ndof);
134 // windupLimit.setConstant(10);
135 joint_pos_task->pid()->setWindupLimit(Eigen::VectorXd::Constant(ndof, 10));
136

137 // Eigen::VectorXd D(ndof);
138 // D.setConstant(10);
139 joint_pos_task->pid()->setDerivativeGain(Eigen::VectorXd::Constant(ndof, 10));
140

141 joint_pos_task->setWeight(1.e-6);
142
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143

144 auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("CartTask_EE-servo_
→˓controller");

145 Vector6d P;
146 P << 1000, 1000, 1000, 10, 10, 10;
147 cart_acc_pid->pid()->setProportionalGain(P);
148 Vector6d D;
149 D << 100, 100, 100, 1, 1, 1;
150 cart_acc_pid->pid()->setDerivativeGain(D);
151 cart_acc_pid->setControlFrame("link_7");
152

153 auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
154 cart_task->setServoController(cart_acc_pid);
155

156

157

158 auto jnt_trq_cstr = controller.addConstraint<JointTorqueLimitConstraint>(
→˓"JointTorqueLimit");

159 Eigen::VectorXd jntTrqMax(ndof);
160 jntTrqMax.setConstant(200.0);
161 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);
162

163 auto jnt_pos_cstr = controller.addConstraint<JointPositionLimitConstraint>(
→˓"JointPositionLimit");

164

165 auto jnt_vel_cstr = controller.addConstraint<JointVelocityLimitConstraint>(
→˓"JointVelocityLimit");

166 Eigen::VectorXd jntVelMax(ndof);
167 jntVelMax.setConstant(2.0);
168 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);
169

170 GazeboServer gzserver(argc,argv);
171 auto gz_model = GazeboModel(gzserver.insertModelFromURDFFile(urdf_url));
172 gz_model.setModelConfiguration( { "joint_0", "joint_3","joint_5"} , {1.0,-M_PI/2.,

→˓M_PI/2.});
173

174 ///////////////////////////////////////
175 ///////////////////////////////////////
176 ///////////////////////////////////////
177 ///////////////////////////////////////
178

179 MinJerkPositionTrajectory traj(5.0);
180 int traj_loops = 0;
181 Eigen::Vector3d start_position, end_position;
182 Eigen::VectorXd controller_torques(ndof);
183 Eigen::Affine3d desired_cartesian_pose;
184 Vector6d desired_cartesian_vel = Vector6d::Zero();
185 Vector6d desired_cartesian_acc = Vector6d::Zero();
186

187 cart_task->onActivationCallback([](){
188 std::cout << "Activating CartesianTask..." << '\n';
189 });
190

191 cart_task->onActivatedCallback([&](){
192 desired_cartesian_pose = cart_acc_pid->getCurrentCartesianPose();
193 Eigen::Quaterniond quat = orca::math::quatFromRPY(M_PI,0,0); // make it point

→˓to the table
(continues on next page)
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194 desired_cartesian_pose.linear() = quat.toRotationMatrix();
195

196 start_position = desired_cartesian_pose.translation();
197 end_position = start_position + Eigen::Vector3d(0,-0.35,-.3);
198 traj.resetTrajectory(start_position, end_position);
199 });
200

201 cart_task->onComputeBeginCallback([&](double current_time, double dt){
202 if (cart_task->getState() == TaskBase::State::Activated)
203 {
204 Eigen::Vector3d p, v, a;
205 traj.getDesired(current_time, p, v, a);
206

207 desired_cartesian_pose.translation() = p;
208 desired_cartesian_vel.head(3) = v;
209 desired_cartesian_acc.head(3) = a;
210

211 cart_acc_pid->setDesired(desired_cartesian_pose.matrix(),desired_
→˓cartesian_vel,desired_cartesian_acc);

212 }
213 });
214

215 cart_task->onComputeEndCallback([&](double current_time, double dt){
216 if (cart_task->getState() == TaskBase::State::Activated)
217 {
218 if (traj.isTrajectoryFinished() )
219 {
220 if (traj_loops < 10)
221 {
222 // flip start and end positions.
223 auto ep = end_position;
224 end_position = start_position;
225 start_position = ep;
226 traj.resetTrajectory(start_position, end_position);
227 std::cout << "Changing trajectory direction. [" << traj_loops <<

→˓" of 10]" << '\n';
228 ++traj_loops;
229 }
230 else
231 {
232 std::cout << "Trajectory looping finished. Deactivating task and

→˓starting gravity compensation." << '\n';
233 cart_task->deactivate();
234 }
235 }
236 }
237 });
238

239 cart_task->onDeactivationCallback([&](){
240 std::cout << "Deactivating task." << '\n';
241 std::cout << "\n\n\n" << '\n';
242 std::cout << "Last controller_torques:\n" << controller_torques << '\n';
243 });
244

245 cart_task->onDeactivatedCallback([&](){
246 std::cout << "CartesianTask deactivated." << '\n';
247 });
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248

249

250 // Lets decide that the robot is gravity compensated
251 // So we need to remove G(q) from the solution
252 controller.removeGravityTorquesFromSolution(true);
253 gz_model.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double

→˓dt)
254 {
255 robot_model->setRobotState(gz_model.getWorldToBaseTransform().matrix()
256 ,gz_model.getJointPositions()
257 ,gz_model.getBaseVelocity()
258 ,gz_model.getJointVelocities()
259 ,gz_model.getGravity()
260 );
261 gz_model.setJointGravityTorques(robot_model->getJointGravityTorques());
262 // All tasks need the robot to be initialized during the activation phase
263 if(n_iter == 1)
264 controller.activateTasksAndConstraints();
265

266 controller.update(current_time, dt);
267

268 if(controller.solutionFound())
269 {
270 controller_torques = controller.getJointTorqueCommand();
271 gz_model.setJointTorqueCommand( controller_torques );
272 }
273 else
274 {
275 gz_model.setBrakes(true);
276 }
277 });
278

279 std::cout << "Simulation running... (GUI with \'gzclient\')" << '\n';
280 // If you want to pause the simulation before starting it uncomment these lines
281 // Note that to unlock it either open 'gzclient' and click on the play button
282 // Or open a terminal and type 'gz world -p false'
283 //
284 std::cout << "Gazebo is paused, open gzclient to unpause it or type 'gz world -p

→˓false' in a new terminal" << '\n';
285 gazebo::event::Events::pause.Signal(true);
286

287 gzserver.run();
288 return 0;
289 }

1.1.10 Plotting

Using the internal plotting tools

Note: The source code for this example can be found in [orca_root]/examples/plotting/
01-plotting_torques.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/
plotting/01-plotting_torques.cc
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Full Code Listing

1 // This file is a part of the ORCA framework.
2 // Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
3 // Copyright 2018, Fuzzy Logic Robotics
4 // Main contributor(s): Antoine Hoarau, Ryan Lober, and
5 // Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
6 //
7 // ORCA is a whole-body reactive controller framework for robotics.
8 //
9 // This software is governed by the CeCILL-C license under French law and

10 // abiding by the rules of distribution of free software. You can use,
11 // modify and/ or redistribute the software under the terms of the CeCILL-C
12 // license as circulated by CEA, CNRS and INRIA at the following URL
13 // "http://www.cecill.info".
14 //
15 // As a counterpart to the access to the source code and rights to copy,
16 // modify and redistribute granted by the license, users are provided only
17 // with a limited warranty and the software's author, the holder of the
18 // economic rights, and the successive licensors have only limited
19 // liability.
20 //
21 // In this respect, the user's attention is drawn to the risks associated
22 // with loading, using, modifying and/or developing or reproducing the
23 // software by the user in light of its specific status of free software,
24 // that may mean that it is complicated to manipulate, and that also
25 // therefore means that it is reserved for developers and experienced
26 // professionals having in-depth computer knowledge. Users are therefore
27 // encouraged to load and test the software's suitability as regards their
28 // requirements in conditions enabling the security of their systems and/or
29 // data to be ensured and, more generally, to use and operate it in the
30 // same conditions as regards security.
31 //
32 // The fact that you are presently reading this means that you have had
33 // knowledge of the CeCILL-C license and that you accept its terms.
34

35 /** @file
36 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
37 @author Antoine Hoarau
38 @author Ryan Lober
39 */
40

41 #include <orca/orca.h>
42 #include <matplotlibcpp/matplotlibcpp.h>
43 using namespace orca::all;
44

45 namespace plt = matplotlibcpp;
46

47 int main(int argc, char const *argv[])
48 {
49 // Get the urdf file from the command line
50 if(argc < 2)
51 {
52 std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -

→˓l debug/info/warning/error)" << "\n";
53 return -1;
54 }

(continues on next page)
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55 std::string urdf_url(argv[1]);
56

57 // Parse logger level as --log_level (or -l) debug/warning etc
58 orca::utils::Logger::parseArgv(argc, argv);
59

60 // Create the kinematic model that is shared by everybody
61 auto robot_model = std::make_shared<RobotModel>(); // Here you can pass a robot

→˓name
62 robot_model->loadModelFromFile(urdf_url); // If you don't pass a robot name, it

→˓is extracted from the urdf
63 robot_model->setBaseFrame("base_link"); // All the transformations (end effector

→˓pose for example) will be expressed wrt this base frame
64 robot_model->setGravity(Eigen::Vector3d(0,0,-9.81)); // Sets the world gravity

→˓(Optional)
65

66 // This is an helper function to store the whole state of the robot as eigen
→˓vectors/matrices

67 // This class is totally optional, it is just meant to keep consistency for the
→˓sizes of all the vectors/matrices

68 // You can use it to fill data from either real robot and simulated robot
69 RobotState eigState;
70 eigState.resize(robot_model->getNrOfDegreesOfFreedom()); // resize all the

→˓vectors/matrices to match the robot configuration
71 // Set the initial state to zero (arbitrary)
72 // NOTE : here we only set q,qot because this example asserts we have a fixed

→˓base robot
73 eigState.jointPos.setZero();
74 eigState.jointVel.setZero();
75 // Set the first state to the robot
76 robot_model->setRobotState(eigState.jointPos,eigState.jointVel); // Now is the

→˓robot is considered 'initialized'
77

78 // Instanciate an ORCA Controller
79 orca::optim::Controller controller(
80 "controller"
81 ,robot_model
82 ,orca::optim::ResolutionStrategy::OneLevelWeighted // MultiLevelWeighted,

→˓Generalized
83 ,QPSolverImplType::qpOASES
84 );
85

86 auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("servo_controller
→˓");

87 Vector6d P;
88 P << 1000, 1000, 1000, 10, 10, 10;
89 cart_acc_pid->pid()->setProportionalGain(P);
90 Vector6d D;
91 D << 100, 100, 100, 1, 1, 1;
92 cart_acc_pid->pid()->setDerivativeGain(D);
93 cart_acc_pid->setControlFrame("link_7");
94 Eigen::Affine3d cart_pos_ref;
95 cart_pos_ref.translation() = Eigen::Vector3d(0.3,-0.5,0.41); // x,y,z in meters
96 cart_pos_ref.linear() = orca::math::quatFromRPY(M_PI,0,0).toRotationMatrix();
97 Vector6d cart_vel_ref = Vector6d::Zero();
98 Vector6d cart_acc_ref = Vector6d::Zero();
99 cart_acc_pid->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_ref);

100

(continues on next page)
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101 auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
102 cart_task->setServoController(cart_acc_pid);
103

104 // Get the number of actuated joints
105 const int ndof = robot_model->getNrOfDegreesOfFreedom();
106

107 // Joint torque limit is usually given by the robot manufacturer
108 auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit

→˓");
109 controller.addConstraint(jnt_trq_cstr); // Add the constraint to the controller

→˓to initialize it
110 Eigen::VectorXd jntTrqMax(ndof);
111 jntTrqMax.setConstant(200.0);
112 jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax); // because not read in the URDF

→˓for now
113

114 // Joint position limits are automatically extracted from the URDF model
115 // Note that you can set them if you want
116 // by simply doing jnt_pos_cstr->setLimits(jntPosMin,jntPosMax);
117 auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>(

→˓"JointPositionLimit");
118 controller.addConstraint(jnt_pos_cstr); // Add the constraint to the controller

→˓to initialize it
119

120 // Joint velocity limits are usually given by the robot manufacturer
121 auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>(

→˓"JointVelocityLimit");
122 controller.addConstraint(jnt_vel_cstr); // Add the constraint to the controller

→˓to initialize it
123 Eigen::VectorXd jntVelMax(ndof);
124 jntVelMax.setConstant(2.0);
125 jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax); // because not read in the URDF

→˓for now
126

127 double dt = 0.001;
128 double total_time = 1.0;
129 double current_time = 0;
130

131 // Shortcut : activate all tasks
132 controller.activateTasksAndConstraints();
133

134 // Now you can run the control loop
135 std::vector<double> time_log;
136 int ncols = std::ceil(total_time/dt);
137 Eigen::MatrixXd torqueMat(ndof,ncols);
138 torqueMat.setZero();
139

140 for (int count = 0; current_time < total_time; current_time +=dt)
141 {
142 time_log.push_back(current_time);
143

144 // Here you can get the data from you REAL robot (API might vary)
145 // Some thing like :
146 // eigState.jointPos = myRealRobot.getJointPositions();
147 // eigState.jointVel = myRealRobot.getJointVelocities();
148

149 // Now update the internal kinematic model with data from REAL robot
(continues on next page)
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150 robot_model->setRobotState(eigState.jointPos,eigState.jointVel);
151

152 // Step the controller
153 if(controller.update(current_time,dt))
154 {
155

156 // Get the controller output
157 const Eigen::VectorXd& full_solution = controller.getSolution();
158

159 torqueMat.col(count) = controller.getJointTorqueCommand();
160

161 const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();
162

163 // Here you can send the commands to you REAL robot
164 // Something like :
165 // myRealRobot.setTorqueCommand(trq_cmd);
166 }
167 else
168 {
169 // Controller could not get the optimal torque
170 // Now you have to save your robot
171 // You can get the return code with controller.getReturnCode();
172 }
173

174 count++;
175

176 std::cout << "current_time " << current_time << '\n';
177 std::cout << "total_time " << total_time << '\n';
178 std::cout << "time log size " << time_log.size() << '\n';
179 std::cout << "torqueMat.cols " << torqueMat.cols() << '\n';
180 }
181

182 // Print the last computed solution (just for fun)
183 const Eigen::VectorXd& full_solution = controller.getSolution();
184 const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();
185 const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();
186 LOG_INFO << "Full solution : " << full_solution.transpose();
187 LOG_INFO << "Joint Acceleration command : " << trq_acc.transpose();
188 LOG_INFO << "Joint Torque command : " << trq_cmd.transpose();
189

190 // At some point you want to close the controller nicely
191 controller.deactivateTasksAndConstraints();
192 // Let all the tasks ramp down to zero
193 while(!controller.tasksAndConstraintsDeactivated())
194 {
195 current_time += dt;
196 controller.print();
197 controller.update(current_time,dt);
198 }
199

200 // Plot data
201 for (size_t i = 0; i < torqueMat.rows(); i++)
202 {
203 std::vector<double> trq(time_log.size());
204 Eigen::VectorXd::Map(trq.data(),time_log.size()) = torqueMat.row(i);
205 plt::plot(time_log,trq);
206 }

(continues on next page)
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207 plt::show();
208 return 0;
209 }

1.1.11 Overview

The most generic representation of the whole-body controller used in ORCA can be summarized by the following
optimization problem,

arg min
𝜒

𝑓 task(𝜒)

s.t. 𝐺𝜒 ≤ ℎ

𝐴𝜒 = 𝑏.

(1.1)

• s.t.: subject to

The objective, 𝑓 task(𝜒), is a function of the optimization variable, 𝜒, and is determined by control objectives, or tasks.
The resolution of the objective is subject to (s.t.) the affine inequality and equality constraints, which ensure that the
control constraints are respected.

To understand how whole-body controllers are formulated in ORCA, we begin with a brief description of the free-
floating rigid body dynamics. The parameterization of the dynamics forms the optimization variable. The control
objectives, or tasks, and constraints are then detailed and written in terms of the optimization variable. Finally, task
prioritization schemes are discussed.

1.1.12 Dynamics

Free-Floating Rigid Body Dynamics

For robots whose root link can float freely in Cartesian space, e.g. humanoids, it is necessary to consider the pose of
the root link with respect to (wrt) the inertial reference frame. The primary method for doing so is to account for the
root link pose directly in the generalized coordinates, 𝑞, of the robot as shown by:
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The generalized configuration parameterization for floating base robots,

𝑞 =

{︂
𝜉𝑓𝑏
𝑞𝑗

}︂
, (1.2)

therefore contains the pose of the base link wrtthe inertial reference frame, 𝜉𝑓𝑏, and the joint space coordinates, 𝑞𝑗 . Set
brackets are used in (1.2) because 𝜉𝑓𝑏 is a homogeneous transformation matrix in R4×4 and 𝑞𝑗 is a vector in R𝑛, with
𝑛 the number of dofof the robot, thus 𝜉𝑓𝑏 and 𝑞𝑗 cannot be concatenated into a vector. However, the twist of the base,
𝑣𝑓𝑏, with the joint velocities, 𝑞̇𝑗 , can be concatenated in vector notation, along with the base and joint accelerations to
obtain,

𝜈 =

[︂
𝑣𝑓𝑏

𝑞̇𝑗

]︂
, and 𝜈̇ =

[︂
𝑣̇𝑓𝑏

𝑞̈𝑗

]︂
. (1.3)

These representations provide a complete description of the robot’s state and its rate of change, and allow the equations
of motion to be written as,

𝑀(𝑞)𝜈̇ + 𝐶(𝑞,𝜈)𝜈 + 𝑔(𝑞)⏟  ⏞  
𝑛(𝑞,𝜈)

= 𝑆⊤𝜏 + 𝑒𝐽⊤(𝑞)𝑒𝜔.
(1.4)

In (1.4), 𝑀(𝑞) is the generalized mass matrix, 𝐶(𝑞,𝜈)𝜈 and 𝑔(𝑞) are the Coriolis-centrifugal and gravitational terms,
𝑆 is a selection matrix indicating the actuated degrees of freedom, 𝑒𝜔 is the concatenation of the external contact
wrenches, and 𝑒𝐽 their concatenated Jacobians.

Grouping 𝐶(𝑞,𝜈)𝜈 and 𝑔(𝑞) together into 𝑛(𝑞,𝜈), the equations can by simplified to

𝑀(𝑞)𝜈̇ + 𝑛(𝑞,𝜈) = 𝑆⊤𝜏 + 𝑒𝐽⊤(𝑞)𝑒𝜔. (1.5)

The joint torques induced by friction force could also be included in (1.5), but are left out for the sake of simplicity.
Additionally, the variables 𝜈̇, 𝜏 , and 𝑒𝜔, can be grouped into the same vector,

𝜒 =

⎡⎣ 𝜈̇
𝜏
𝑒𝜔

⎤⎦ , (1.6)

forming the optimization variable from (1.1), and allowing (1.5) to be rewritten as,[︀
−𝑀(𝑞) 𝑆⊤ 𝑒𝐽⊤(𝑞)

]︀
𝜒 = 𝑛(𝑞,𝜈). (1.7)

Equation (1.7) provides an equality constraint which can be used to ensure that the minimization of the control objec-
tives respects the system dynamics.

1.1.13 Optimization

Optimization Vector

In Free-Floating Rigid Body Dynamics we expressed the equations of motion as an affine function of our optimiza-
tion variable, 𝜒. Here, we look at each component in 𝜒 and detail its meaning, position in the overall vector, and
dimensions.

𝜒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜈̇𝑓𝑏

𝜈̇𝑗

𝜏 𝑓𝑏

𝜏 𝑗
𝑒𝜔0

...
𝑒𝜔𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• 𝜈̇𝑓𝑏 : Floating base joint acceleration (6× 1)

• 𝜈̇𝑗 : Joint space acceleration (𝑛𝐷𝑜𝐹 × 1)

• 𝜏 𝑓𝑏 : Floating base joint torque (6× 1)

• 𝜏 𝑗 : Joint space joint torque (𝑛𝐷𝑜𝐹 × 1)

• 𝑒𝜔𝑛 : External wrench (6× 1)

Each of these variables are termed Control Variables in ORCA and are used to define every task and constraint.

These variables can of course be combined for convenience:

• 𝜈̇ : Generalised joint acceleration, concatenation of 𝜈̇𝑓𝑏 and 𝜈̇𝑗 (6 + 𝑛𝐷𝑜𝐹 × 1)

• 𝜏 : Generalised joint torque, concatenation of 𝜏 𝑓𝑏 and 𝜏 𝑗 (6 + 𝑛𝐷𝑜𝐹 × 1)

• 𝑒𝜔 : External wrenches (𝑛wrenches6× 1)

• 𝜒 : The whole optimization vector (6 + 𝑛𝐷𝑜𝐹 + 6 + 𝑛𝐷𝑜𝐹 + 𝑛𝑤𝑟𝑒𝑛𝑐ℎ𝑒𝑠6× 1)

With our optimization varible well defined, we can now formulate the optimization problem.

The Optimization Problem

Returning to our generic representation of a whole-body controller presented in Overview,

arg min
𝜒

𝑓 task(𝜒)

s.t. 𝐺𝜒 ≤ ℎ

𝐴𝜒 = 𝑏,

(1.8)

we make some important assumptions about the structure of the problem. Firstly, we make the assumtion that our
control problem is continous and has size = 𝑛, i.e. 𝜒 ∈ R𝑛. Next we impose that 𝑓 task(𝜒) be quadratic in 𝜒, leaving
us with an unconstrained Quadratic Program, or QP:

arg min
𝜒

𝑓(𝜒) =
1

2
𝜒⊤𝐻𝜒 + 𝑔⊤𝜒 + 𝑟

= 𝜒⊤(𝐸⊤𝐸)𝜒− 2(𝐸⊤f)⊤𝜒 + f⊤f

= ‖𝐸𝜒− f‖22 ,

(1.9)

In (1.9), the first line is the classical formulation of a QP:

• 𝜒 the optimization vector

• 𝐻 the hessian matrix (𝑛× 𝑛)

• 𝑔 the gradient vector (𝑛× 1)

• 𝐸 the linear matrix of the affine function (𝑛× 𝑛)

• 𝑓 the origin vector (𝑛× 1)

The last line of (1.9), ‖𝐸𝜒− f‖22, is the least-squares formulation. We will continue using the least squares version,
which admits an analytical minimum-norm solution, 𝜒*, in the unconstrained case.

𝜒* = arg min
𝜒

‖𝐸𝜒− f‖22 = 𝐸†f , (1.10)

where 𝐸† is the Moore-Penrose pseudoinverse of the 𝐸 matrix. This solution will be found assuming the rank of the
linear system is consistent.
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Adding an affine equality constraint produces a constrained least squares problem,

arg min
𝜒

‖𝐸𝜒− f‖22

s.t. 𝐴𝜒 = 𝑏,
(1.11)

which can be solved analytically, assuming a solution exists, using the Karush Kuhn Tucker (KKT) equations,[︂
𝐸⊤𝐸 𝐴⊤

𝐴 0

]︂
⏟  ⏞  

KKT Matrix

[︂
𝜒
𝑧

]︂
=

[︂
𝐸⊤f
𝑏

]︂

⇔
[︂
𝜒
𝑧

]︂
=

[︂
𝐸⊤𝐸 𝐴⊤

𝐴 0

]︂−1 [︂
𝐸⊤f
𝑏

]︂
,

(1.12)

where 𝑧 is the solution to the dual problem and contains the Lagrange multipliers.

Adding an affine inequality constraint to the problem produces the following QP,

arg min
𝜒

‖𝐸𝜒− f‖22

s.t. 𝐴𝜒 = 𝑏

𝐺𝜒 ≤ ℎ.

(1.13)

Equation (1.13) can no longer be solved analytically and one must use numerical methods such as interior point, or
active set methods.

Note: For more details on convex optimization, check out Boyd and Vandenberghe’s book: http://web.stanford.edu/
~boyd/cvxbook/

Resolution of (1.13) with a numerical solver, such as qpOASES, will provide a globally optimal solution for 𝜒*

provided that the constraint equations are consistent, i.e. the set of possible solutions is not empty.

Objective Function Implementation

Within ORCA the QP objective function is formulated as a weighted Euclidean norm of an affine function,

‖𝐸𝜒− f‖2𝑊 ⇔
⃦⃦⃦√

𝑊 (𝐸𝜒− f)
⃦⃦⃦2

(1.14)

In (1.14), 𝑊 is the weight of the euclidean norm (𝑛× 𝑛) and must be a positive symmetric definite matrix.

In ORCA, 𝑊 is actually composed of two components, the norm weighting 𝑊 ′ and the selection matrix, 𝑆,

𝑊 = 𝑆𝑊 ′ (1.15)

𝑆 is a matrix with either 1’s or 0’s on the diagonal which allows us to ignore all or parts of the affine function we are
computing. Concretely this means we can ignore components of the task error. More information on tasks is provided
in the Control Objectives (Tasks) section.

For example. . .

For a Cartesian position task, setting the low 3 entries on the diagonal of 𝑆 to 0 allows us to ignore orientation errors.

For practicality’s sake we set 𝑆 from a vector with the function setSelectionVector(const
Eigen::VectorXd& s), which creates a diagonal matrix from s.
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Given 𝑊 from (1.15), the hessian and gradient are calculated as,

1

2
𝜒⊤𝐻𝜒 + 𝑔⊤𝜒

⇔ 𝜒⊤(𝐸⊤𝑊𝐸)𝜒− 2(𝑊𝐸⊤f)⊤𝜒

Note: 𝑟 = f⊤f is dropped from the objective function because it does not change the optimal solution of the QP.

In the code, these calculations can be found in WeightedEuclidianNormFunction:

void WeightedEuclidianNormFunction::QuadraticCost::computeHessian(const
→˓Eigen::VectorXd& SelectionVector

, const Eigen::MatrixXd& Weight
, const Eigen::MatrixXd& A)

{
Hessian_.noalias() = SelectionVector.asDiagonal() * Weight * A.transpose() * A ;

}

void WeightedEuclidianNormFunction::QuadraticCost::computeGradient(const
→˓Eigen::VectorXd& SelectionVector

, const Eigen::MatrixXd& Weight
, const Eigen::MatrixXd& A
, const Eigen::VectorXd& b)

{
Gradient_.noalias() = 2.0 * SelectionVector.asDiagonal() * Weight * A.

→˓transpose() * b ;
}

Constraint Implementation

Constraints are written as double bounded linear functions,

𝑙𝑏 ≤ 𝐶𝜒 ≤ 𝑢𝑏.

• 𝐶 the constraint matrix (𝑛× 𝑛)

• 𝑙𝑏 and 𝑢𝑏 the lower and upper bounds of 𝐶𝜒 (𝑛× 1)

Thus to convert our standard affine constraint forms we have the following relationships:

𝐴𝜒 = 𝑏⇔ 𝑏 ≤ 𝐴𝜒 ≤ 𝑏

𝐺𝜒 ≤ ℎ⇔
[︂
𝐺𝜒
−𝐺𝜒

]︂
≤

[︂
𝑢𝑏ℎ
−𝑙𝑏ℎ

]︂
⇔ 𝑙𝑏ℎ ≤ 𝐺𝜒 ≤ 𝑢𝑏ℎ

ORCA QP

In ORCA the full QP is expressed as,

arg min
𝜒

1

2
𝜒⊤𝐻𝜒 + 𝑔⊤𝜒

s.t. 𝑙𝑏 ≤ 𝜒 ≤ 𝑢𝑏

𝑙𝑏 ≤ 𝐶𝜒 ≤ 𝑢𝑏,
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Note: For convenience an explicit constraint on the optimization variable 𝜒 is included in the problem because it is
so common. This constraint is identical to the second line: 𝑙𝑏 ≤ 𝐶𝜒 ≤ 𝑢𝑏 when 𝐶 is the identity matrix.

In the next sections we show how to formulate the different task and constraint types one might need to control a
robot. In section Multi-Objective Optimization, we show how to combine multiple objective functions (tasks) in one
controller allowing us to exploit the redundancy of the system.

Note: Multiple constraints can be combined through vertical concatenation of their matrices and vectors. I.e.⎡⎢⎢⎢⎣
𝑙𝑏1
𝑙𝑏2

...
𝑙𝑏𝑛𝐶

⎤⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎣

𝐶1

𝐶2

...
𝐶𝑛𝐶

⎤⎥⎥⎥⎦𝜒 ≤

⎡⎢⎢⎢⎣
𝑢𝑏1
𝑢𝑏2

...
𝑢𝑏𝑛𝐶

⎤⎥⎥⎥⎦

1.1.14 Tasks

Control Objectives (Tasks)

The basic problem of control is to drive a system from some initial state to some desired state. The control of robots is
no different, but the term state takes on greater ambiguity. For simple systems, such as the double integrator, linearized
inverted pendulum, etc., state-space control is sufficient for virtually any high-level objective one could envision for
the system. However, for a robot, describing the control problem solely in terms of its state, i.e. 𝑞 and 𝜈, is limiting and
one may also want to describe it in terms of the pose and twist of an end-effector, or possibly even a wrench on some
link (although not technically a state in the classical control sense). Far from being a detriment, this variability is what
makes robots so useful but requires a bit of abstraction from classical state-space control vocabulary. For this reason,
the term task is commonly used to indicate a control objective for a robot. Tasks, in second-order controllers, can be
driven by desired accelerations, wrenches, or torques, and in operational-space or joint-space. They are expressed in
the whole-body controller as functions of the errors between the desired and current values of the task. In this work,
the square of the 𝑙2-norm is used to create a quadratic objective function. Consequently, the task errors are expressed
in the least-squares formulation.

Cartesian Acceleration Task

Probably the most important, if not most prevalent, task is to move a link on the robot from one pose to another.
Typically it is the end-effector(s) which are of interest. These tasks, which are generally expressed as desired positions
or orientations, are converted to acceleration tasks, through means of task servoing. More details on task servoing are
provided in Task Servoing. Once given a desired operational-space acceleration for a link, 𝜉

des
𝑖 , an acceleration task

consists in finding the joint-space values which produce 𝜉
des
𝑖 ,

𝜉
des
𝑖 = 𝐽𝑖(𝑞)𝜈̇ + 𝐽𝑖(𝑞,𝜈)𝜈, (1.16)

where 𝐽𝑖(𝑞) and 𝐽𝑖(𝑞,𝜈) are the link Jacobian and its derivative. For the control objective, one simply rewrites the
task as an error which must be minimized,

𝑓𝜉
𝑖 =

⃦⃦⃦
𝐽𝑖(𝑞)𝜈̇ + 𝐽𝑖(𝑞,𝜈)𝜈 − 𝜉

des
𝑖

⃦⃦⃦2
2

. (1.17)
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Using the squared 𝑙2-norm produces a quadratic error term, which defines the objective function 𝑓𝜉
𝑖 to be minimized.

The objective function 𝑓𝜉
𝑖 is then rewritten in terms of the optimization variable, 𝜒,

𝑓𝜉
𝑖 =

⃦⃦⃦[︀
𝐽𝑖(𝑞) 0

]︀
𝜒−

(︁
𝜉

des
𝑖 − 𝐽𝑖(𝑞,𝜈)𝜈

)︁⃦⃦⃦2
2

. (1.18)

In (1.18) the term 0 represents a matrix of zeros. Regrouping terms as,

𝐸𝜉 =
[︀
𝐽𝑖(𝑞) 0

]︀
(1.19)

f𝜉 = 𝜉
des
𝑖 − 𝐽𝑖(𝑞,𝜈)𝜈, (1.20)

allows (1.18) to be written in the classical least-squares form as,

𝑓𝜉
𝑖 =

⃦⃦⃦
𝐸𝜉𝜒− f𝜉

⃦⃦⃦2
2

. (1.21)

The dependencies of 𝐸𝜉 and f𝜉 have been removed for brevity.

𝑤𝑡𝑎𝑠𝑘.‖E𝑥 + f‖𝑊𝑛𝑜𝑟𝑚

Y
𝑛×1

= 𝑋
𝑛×𝑝
× 𝜃

𝑝×1
+ 𝜀

𝑛×1

Joint Acceleration Task

Acceleration tasks can be expressed in either joint-space or in operational-space. Here, the operational-space form is
presented but the joint-space form can easily be produced as,

𝑓 𝜈̇
𝑖 =

⃦⃦
𝜈̇ − 𝜈̇des

𝑖

⃦⃦2
2

, (1.22)

with

𝐸𝜈̇ =
[︀
𝐼 0

]︀
(1.23)

f 𝜈̇ = 𝜈̇des
𝑖 , (1.24)

where 𝐼 is the identity matrix. Substituting (1.23) and (1.24) into (1.22) gives,

𝑓 𝜈̇
𝑖 =

⃦⃦
𝐸𝜈̇𝜒− f 𝜈̇

⃦⃦2
2

. (1.25)

Wrench Task

In order for robots to work properly in their environment, they must be able to interact with it. Not only does this
allow the robot to manipulate and modify its environment, but it also allows the robot to exploit the environment
to compensate for its underactuation and more generally to dynamically perform complex behaviors. Walking and
balance are two pertinent examples of such behaviors because to achieve them, contact forces with the ground must
be properly exploited. For details on this see. . .

Todo: add citations

In order to interact with the environment, wrench tasks can be formulated to manage the interaction forces and
torques,

𝑒𝜔𝑖 = 𝑒𝜔des
𝑖 . (1.26)
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where 𝑒𝜔des
𝑖 is the desired external wrench to affect, and 𝑒𝜔𝑖 is the wrench applied on the environment. Again, to

formulate a control objective function, 𝑓𝜔
𝑖 , the task is rewritten as the squared norm of a task error,

𝑓𝜔
𝑖 =

⃦⃦
𝑒𝜔𝑖 − 𝑒𝜔des

𝑖

⃦⃦2
2

. (1.27)

Rewriting (1.27) in terms of 𝜒 gives,

𝑓𝜔
𝑖 =

⃦⃦[︀
0 𝑆𝜔

𝑖

]︀
𝜒− 𝑒𝜔des

𝑖

⃦⃦2
2

, (1.28)

where 𝑆𝜔
𝑖 is a wrench selection matrix which allows the 𝑖th wrench to be controlled. Using,

𝐸𝜔 =
[︀
0 𝑆𝜔

𝑖

]︀
(1.29)

f𝜔 = 𝑒𝜔des
𝑖 , (1.30)

(1.28) can be written as,

𝑓𝜔
𝑖 = ‖𝐸𝜔𝜒− f𝜔‖22 . (1.31)

Torque Task

Finally, it may also be desirable to specify torque tasks for purposes of regularization, among other possibilities. As
with wrench tasks, torque tasks, can be written simply as,

𝜏 = 𝜏 des. (1.32)

To formulate the control objective function, 𝑓𝜏 , the square norm of the task error is written,

𝑓𝜏 =
⃦⃦
𝜏 − 𝜏 des

⃦⃦2
2

, (1.33)

which can be reformulated in terms of 𝜒 as,

𝑓𝜏 =
⃦⃦[︀
0 𝑆⊤ 0

]︀
𝜒− 𝜏 des

⃦⃦2
2

. (1.34)

Once again regrouping terms,

𝐸𝜏 =
[︀
0 𝑆⊤ 0

]︀
(1.35)

f𝜏 = 𝜏 des, (1.36)

the least-squares form of the torque task is written,

𝑓𝜏 = ‖𝐸𝜏𝜒− f𝜏‖22 . (1.37)

Task Servoing

The desired terms, 𝜉
des
𝑖 , 𝜈̇des

𝑖 , 𝑒𝜔des
𝑖 , and 𝜏 des, from (1.16), (1.22), (1.26), and (1.32), respectively are provided by

higher-level task servoing. Commonly, the high-level reference of a task is simply to attain some pose, and in the
case of a wrench task, some force and/or torque. For acceleration tasks, if the desired task value is expressed as a
pose, position, or orientation, then it must be converted to an acceleration. This is done here using a feedforward (PD)
controller,

𝜉
des
𝑖 (𝑡 + ∆𝑡) = 𝜉

ref
𝑖 (𝑡 + ∆𝑡) + 𝐾𝑝𝜖𝑖(𝑡) + 𝐾𝑑𝜖̇𝑖(𝑡), (1.38)
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noindent where 𝜉
ref
𝑖 (𝑡 + ∆𝑡) is the feedforward frame acceleration term, 𝜖𝑖(𝑡) and 𝜖̇𝑖(𝑡) are the current pose error and

its derivative, with 𝐾𝑝 and 𝐾𝑑 = 2
√︀
𝐾𝑝, their proportional and derivative gains respectively. This term also serves

to remove drift at the controller level and stabilize the output of the task. The terms, 𝜖𝑖(𝑡) and 𝜖̇𝑖(𝑡), are not explicitly
defined here because they are representation dependent (see citep{Siciliano2008}). For wrench and torque tasks a
similar servoing controller can be developed using a Proportional-Integral (PI) controller.

𝜔𝑑𝑒𝑠(𝑡 + ∆𝑡) = 𝜔𝑟𝑒𝑓 (𝑡 + ∆𝑡) + 𝐾𝑝𝜖𝜔(𝑡) + 𝐾𝑖

∫︁
𝜖𝜔(𝑡)𝑑𝑡 (1.39)

This servoing helps stabilize the whole-body controller by driving the desired task values to some fixed state in asymp-
totically stable manner. Without the servoing the the task error objective term, 𝑓 task

𝑖 (𝜒), could change discontinuously
between time steps resulting in discontinuous jumps in the optimal joint torques determined between two time steps.

1.1.15 Constraints

Control Constraints

As with all real world control problems, there are limits to what the system being controlled can do. In this particular
case, the main constraint is that of the system dynamics, i.e. the equations of motion. This means that any solution
found must be dynamically feasible. Apart from this, the control input is typically bounded. For robots with revolute
joints, this means that the torque which can be generated by the actuators is limited to plus or minus some value.
Likewise, the joints themselves generally have limited operating ranges for various mechanical reasons. In addition to
these common limiting factors, other phenomena such as unilateral and bilateral contacts can come into play.

Dynamics Constraints

The rigid body dynamics of the robot are governed by the equations of motion from equations_of_motion_in_optvar.
This constraint ultimately dictates the achievable dynamics of the system, and is formulated as the following equality
constraint, [︀

−𝑀(𝑞) 𝑆⊤ 𝑒𝐽⊤(𝑞)
]︀⏟  ⏞  

𝐴𝑑

𝜒 = 𝑛(𝑞,𝜈)⏟  ⏞  
𝑏𝑑

.
(1.40)

The terms 𝐴𝑑 and 𝑏𝑑 are used to distinguish the equality constraint matrix and vector, respectively, for the dynamic
constraints.

Important: To put this into ORCA standard form we have,

𝑏𝑑 ≤ 𝐴𝑑𝜒 ≤ 𝑏𝑑

Actuator Limit Constraints

Here, we assume that all articulations are revolute and therefore all actuation limits are torque limits, however, expres-
sion of force limits for prismatic joints would be another possibility. Writing these limits as an inequality provides an
upper and lower bound on the amount of torque which can be exerted to accomplish the tasks.

𝜏min ≤ 𝜏 ≤ 𝜏max. (1.41)

Expressing torque_limits in terms of 𝜒 creates the following linear inequality,[︂
0 𝑆⊤ 0
0 −𝑆⊤ 0

]︂
⏟  ⏞  

𝐺𝜏

𝜒 ≤
[︂
𝜏max
−𝜏min

]︂
⏟  ⏞  

ℎ𝜏

.
(1.42)
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Important: To put this into ORCA standard form we have,

𝜏min ≤
[︀
0 𝑆⊤ 0

]︀
𝜒 ≤ 𝜏max

Joint Limit Constraints

Probably the most common limitation of any robot is the range of motion which each joint can achieve. Whether linear
or angular, most joints have a finite range through which they can move thus limiting 𝑞. These joint limits can easily
be expressed as a inequality on 𝑞,

𝑞min ≤ 𝑞 ≤ 𝑞max. (1.43)

Similarly to these position limits, we can also define limits on the joint velocities and accelerations,

𝜈min ≤ 𝜈 ≤ 𝜈max (1.44)

𝜈̇min ≤ 𝜈̇ ≤ 𝜈̇max. (1.45)

The joint position limits, unlike the torque limits, must be manipulated somewhat in order to be properly expressed in
𝜒. To formulate this constraint, 𝑞 needs to be calculated while taking into account a second order prediction of the
joint-space movement,

𝑞(𝑡 + ℎ) = 𝑞(𝑡) + ℎ𝜈(𝑡) +
ℎ2

2
𝜈̇(𝑡), (1.46)

where ℎ is the prediction period, which is generally some multiple of the control period. Note that the floating base
components of the configuration variable are not subject to articular limits, and their corresponding components in 𝑞,
𝜈, and 𝜈̇, are disregarded in (1.46). Dropping the time dependencies, the limits are written,

𝑞min ≤ 𝑞 + ℎ𝜈 +
ℎ2

2
𝜈̇ ≤ 𝑞max

⇔ 2

ℎ2
[𝑞min − (𝑞 + ℎ𝜈)] ≤ 𝜈̇ ≤ 2

ℎ2
[𝑞max − (𝑞 + ℎ𝜈)] .

Using 𝜒, (1.47) can be rewritten as, [︂
𝐼 0
−𝐼 0

]︂
⏟  ⏞  

𝐺𝑞

𝜒 ≤ 2

ℎ2

[︂
𝑞max − (𝑞 + ℎ𝜈)
− [𝑞min − (𝑞 + ℎ𝜈)]

]︂
⏟  ⏞  

ℎ𝑞

.
(1.47)

From (1.47), one can of course naturally derive joint velocity and acceleration limits,[︂
𝐼 0
−𝐼 0

]︂
⏟  ⏞  

𝐺𝜈

𝜒 ≤ 1

ℎ

[︂
𝜈max − 𝜈
− (𝜈min − 𝜈)

]︂
⏟  ⏞  

ℎ𝜈

(1.48)

[︂
𝐼 0
−𝐼 0

]︂
⏟  ⏞  

𝐺𝜈̇

𝜒 ≤
[︂
𝜈̇max
−𝜈̇min

]︂
⏟  ⏞  

ℎ𝜈̇

.
(1.49)

The choice of the prediction period, ℎ, in the joint-space limits is crucial to the proper functioning of these constraints.
Smaller values of ℎ lead to more aggressive approaches to the joint limits, while larger values produce a more con-
servative treatment. This variability is due to the fact that the prediction does not take into account the deceleration
capabilities of the joints.
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Important: To put these constraints into ORCA standard form we have,

2

ℎ2
[𝑞min − (𝑞 + ℎ𝜈)] ≤

[︀
𝐼 0

]︀
𝜒 ≤ 2

ℎ2
[𝑞max − (𝑞 + ℎ𝜈)]

1

ℎ
[𝜈max − 𝜈] ≤

[︀
𝐼 0

]︀
𝜒 ≤ 1

ℎ
[𝜈max − 𝜈]

𝜈̇max ≤
[︀
𝐼 0

]︀
𝜒 ≤ 𝜈̇max

Contact Constraints

When a robot interacts with its environment, it does so through contacts. These contacts can be unilateral contacts,
or bilateral contacts. Simply put, unilateral contacts are those the robot can only push, e.g. foot contact with the
floor, and bilateral contacts are those which allow the robot to push or pull, e.g. gripping the rung of a ladder.

Todo: add citations: Following the formulations in citep{Salini2011} and citep{Saab2013}

For unilateral contact constraints, a linearized approximation of the Coulomb friction cone is employed. A friction
contact constraint in the controller must ensure that the linear velocity at the contact point is zero,

𝐹𝐽𝑖(𝑞)𝜈̇ + 𝐹𝐽𝑖(𝑞,𝜈)𝜈 = 0, (1.50)

and that the wrench remains within a linearized approximation of a friction cone,

𝐹𝐶𝑖
𝐹𝜔𝑖 ≤ 0. (1.51)

In (1.50), 𝐹𝐽 and 𝐹𝐽 contain the linear components of the 𝑖th contact Jacobian. In (1.51), 𝐹𝐶𝑖 is a matrix which
linearly approximates the second-order norm cone,⃦⃦

𝐹𝜔𝑖 − (𝐹𝜔𝑖 · 𝑛̂𝑖)𝑛̂𝑖

⃦⃦
2
≤ 𝜇𝑖(

𝐹𝜔𝑖 · 𝑛̂𝑖), (1.52)

where 𝐹𝜔𝑖 is are the force components of the 𝑖th contact wrench, 𝑛̂𝑖 is the normal vector of the contact, and 𝜇𝑖 is
the friction coefficient. Finally, expressing these two constraints in terms of 𝜒, and defining 𝐹𝜔𝑖 = 𝑆𝐹

𝑖 𝜒, gives the
following coupled equality and inequality constraints,[︀

𝐹𝐽𝑖(𝑞) 0
]︀⏟  ⏞  

𝐴𝜔

𝜒 = −𝐹𝐽𝑖(𝑞,𝜈)𝜈⏟  ⏞  
𝑏𝜔

(1.53)

[︀
0 𝐹𝐶𝑖𝑆

𝐹
𝑖

]︀⏟  ⏞  
𝐺𝜔

𝜒 ≤ 0⏟ ⏞ 
ℎ𝜔

,
(1.54)

where 𝑆𝐹
𝑖 selects the 𝑖th contact force vector. Equations (1.53) and (1.54) are valid for a single contact point. For

surface contacts, e.g. a foot sole, multiple points on the surface can be used for friction contact constraints — usually
the four corners of the foot. Equation (1.53) introduces 3 equality constraints for the linear velocity of the contact
point. The number of inequality constraints introduced by (1.54) depends on the number of polygon edges used
to approximate the friction cone. Here, 6 edges are used, and because of symmetry, this introduces 3 inequality
constraints per contact to the controller.
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Important: To put these constraints into ORCA standard form we have,

𝑏𝜔 ≤ 𝐴𝜔 ≤ 𝑏𝜔

− inf ≤ 𝐺𝜔𝜒 ≤ ℎ𝜔

For bilateral contacts, it is sufficient to ensure no relative motion between the two links, 𝑖 and 𝑗 in contact. It should be
noted that here a link can be some part of the environment for which a kinematic model exists. To ensure no motion
between the links, the following relationship must be true,

(𝐽𝑖(𝑞)− 𝐽𝑗(𝑞)) 𝜈̇ +
(︁
𝐽𝑖(𝑞,𝜈)− 𝐽𝑗(𝑞,𝜈)

)︁
𝜈 = 0, (1.55)

where 𝐽𝑖(𝑞), 𝐽𝑖(𝑞,𝜈), 𝐽𝑗(𝑞), and 𝐽𝑗(𝑞,𝜈), are the Jacobians and their derivatives for the 𝑖textsuperscript{th} and
𝑗textsuperscript{th} links respectively. Putting (1.55) in terms of 𝜒 produces,[︀

(𝐽𝑖(𝑞)− 𝐽𝑗(𝑞)) 0
]︀⏟  ⏞  

𝐴𝑏𝑐

𝜒 = −
(︁
𝐽𝑖(𝑞,𝜈)− 𝐽𝑗(𝑞,𝜈)

)︁
𝜈⏟  ⏞  

𝑏𝑏𝑐

.
(1.56)

Important: To put this constraint into ORCA standard form we have,

𝑏𝑏𝑐 ≤ 𝐴𝑏𝑐 ≤ 𝑏𝑏𝑐

1.1.16 Resolution Strategies

Multi-Objective Optimization

Objective functions represent the intentions of the problem designer: what meaningful quantity or measure is to be
minimized to best solve some issue. As is often the case, there may be more than one quantity or measure which must
be minimized and therefore multiple objective functions are combined together. When multiple objective functions,
𝑓𝑖(𝜒), are considered simultaneously, a multi-objective optimization problem (a.k.a. multicriteria, multicriterion,
or Pareto optimization) is created. One common method of solving multi-objective optimization problems is through
textit{scalarization}. Scalarization is the process of combining of multiple objective costs into one scalar cost. There
are a multitude of scalarization techniques but weighted summation is of the most common,

arg min
𝜒

𝑛𝑜∑︁
𝑖=1

𝑤𝑖𝑓𝑖(𝜒) =

𝑛∑︁
𝑖=1

𝑤𝑖 ‖𝐸𝑖𝜒− f𝑖‖22 . (1.57)

In (1.57), 𝑛𝑜 is the total number of objective functions. This scalarization can be written compactly by concatenating
the individual objectives as,

arg min
𝜒

‖𝐸𝑤𝜒− f𝑤‖22 (1.58)

where

𝐸𝑤 =

⎡⎢⎢⎢⎣
√
𝑤1𝐸1√
𝑤2𝐸2

...√
𝑤𝑛𝐸𝑛𝑜

⎤⎥⎥⎥⎦ and f𝑤 =

⎡⎢⎢⎢⎣
√
𝑤1f1√
𝑤2f2
...√

𝑤𝑛f𝑛𝑜

⎤⎥⎥⎥⎦ . (1.59)
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Each weight, 𝑤𝑖 ≥ 0, dictates the relative importance of its objective 𝑓𝑖(𝜒) and therefore its impact on the solution.
In (1.58) the weights are assumed to be scalars, but it is also possible to use matrices of different weights as long as
they remain positive semi-definite.

As an alternative to scalarization, the objective functions can be minimized hierarchically in order of importance
to ensure that the most important objective(s) are minimized as much as possible without influence of the lower
priority objectives. This is known as lexicographic optimization in multi-objective optimization. To achieve this, the
objectives are treated individually as a cascade of QPs where the solutions are reused as equality constraints in the
subsequent QP minimizations.

Resolution (Prioritization) Strategies for Whole-Body Control

If multiple task objective functions are combined (using operations that preserve convexity) in the resolution of the
control problem, then they can be performed simultaneously. In these cases, it is important to select a strategy for the
resolution of the optimization problem. In turn, the strategy determines how tasks interact/interfere with one another.
The two prevailing methods for dealing with multiple tasks are hierarchical and weighted prioritization.

Hierarchical Prioritization

In hierarchical prioritization, the tasks are organized by order of importance in discrete levels. Each task error is
minimized in descending order of its importance and the solution to the optimization problem is then used in the
equality constraints for the proceeding optimizations.

Hierarchical Prioritization Algorithm

for (𝑖 = 1 . . . 𝑛task)

𝜒*
𝑖 = arg min

𝜒
𝑓 task
𝑖 (𝜒) + 𝑤0𝑓

task
0 (𝜒)

s.t. 𝐺𝜒 ≤ ℎ

𝐴𝑖𝜒 = 𝑏𝑖

𝐴𝑖+1 ←
[︂
𝐴𝑖

𝐸𝑖

]︂
𝑏𝑖+1 ←

[︂
𝑏𝑖
𝜒*

𝑖

]︂
𝜒* ← 𝜒*

𝑖

return 𝜒*

This algorithm is tantamount to null-space projection in the dynamic domain; however, inequality constraints can be
accounted for. As a note, the regularization term, 𝑤0𝑓

task
0 (𝑥), in each optimization cascade serves to remove solution

redundancy when the objective function has a null space, but this redundancy is necessary for executing the subsequent

tasks. The operation, 𝐴𝑖+1 ←
[︂
𝐴𝑖

𝐸𝑖

]︂
, propagates the null space of the objective function, which has just been solved,

to the proceeding objective functions through the equality constraint.

Resolving the whole-body control problem hierarchically has the benefit of strictly ensuring the optimization of one
task error over another; however, it makes task transitioning and blending more difficult. Using continuous, or soft,
priorities can alleviate some of these issues.
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Weighted Prioritization

In multi-objective optimization, task weights dictate where, on the Pareto front of solutions, the QP calculates an
optimum. Consequently, the optimum found favors the minimization of tasks with higher weights. This affords a
method of prioritization, which ensures that critical tasks, such as those for balance, are preferentially accomplished,
in situations where other less-critical tasks, such as a reach, have conflicting optima.

Weighted Prioritization Algorithm

𝜒* = arg min
𝜒

𝑛task∑︁
𝑖=1

𝑤𝑖𝑓
task
𝑖 (𝜒) + 𝑤0𝑓

task
0 (𝜒)

s.t. 𝐺𝜒 ≤ ℎ

𝐴𝜒 = 𝑏.

return 𝜒*

However, using continuous priorities between tasks cannot guarantee that the tasks will not interfere with one another.

Important: In fact, each task will assuredly impact the ensemble but that impact can be rendered numerically
negligible.

Hybrid Schemes

It can be seen that the weighted strategy is a subset of the hierarchical strategy, by observing that each level in a
hierarchical scheme can be solved as a weighted problem. This hybrid prioritization strategy can provide the best
of both hierarchical and weighted methods, but at the cost of increase implementation and computational complexity.

Generalized Hierarchical Prioritization

In addition to the simple mixing of weights and hierarchies, continuous generalized projection schemes are developed
by citep{Liu2016}. These methods allow priorities to continuously vary from weighted to purely hierarchical through
scalar values. Such approaches can provide smooth transitions between tasks, as is common in complex activities such
as walking, but require substantially more computation time than purely weighted or hierarchical methods.

Resolution Strategies in ORCA

ORCA provides three strategies for resolving a multi-objective QP which containts multiple tasks and/or constraints.

1. OneLevelWeighted (weighted prioritization)

2. MultiLevelWeighted (hybrid prioritization)

3. Generalized (generalized hierarchical prioritization)

Note: these strategies are in the namespace orca::optim::ResolutionStrategy

The strategies are implemented in Controller.cc on the controller update:
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bool Controller::update(double current_time, double dt)
{

MutexLock lock(mutex);
solution_found_ = false;

switch (resolution_strategy_)
{

case ResolutionStrategy::OneLevelWeighted:
{

...
}
case ResolutionStrategy::MultiLevelWeighted:
{

...
}
case ResolutionStrategy::Generalized:
{

not implemented yet
}
default:

orca_throw(Formatter() << "unsupported resolution strategy");
}

}

Each of these strategies is detailed in the following sections.

One Level Weighted

case ResolutionStrategy::OneLevelWeighted:
{

updateTasks(current_time,dt);
updateConstraints(current_time,dt);
auto problem = getProblemAtLevel(0);
problem->build();
solution_found_ = problem->solve();

if(this->update_cb_)
this->update_cb_(current_time,dt);

static bool print_warning = true;
if(solution_found_ && isProblemDry(problem) && print_warning)
{

print_warning = false;
LOG_WARNING << "\n\n"

<<" Solution found but the problem is dry !\n"
<< "It means that an optimal solution is found but the problem \n"
<< "only has one task computing anything, ans it's the"
<< "GlobalRegularisation task (This will only be printed once)\n\n"
<< "/!\\ Resulting torques will cause the robot to fall /!\\";

}

return solution_found_;
}

Multi-Level Weighted
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Todo: Not yet implemented. . .

case ResolutionStrategy::MultiLevelWeighted:
{

updateTasks(current_time,dt);
updateConstraints(current_time,dt);
auto problem = getProblemAtLevel(0);
problem->build();
solution_found_ = problem->solve();

if(this->update_cb_)
this->update_cb_(current_time,dt);

static bool print_warning = true;
if(solution_found_ && isProblemDry(problem) && print_warning)
{

print_warning = false;
LOG_WARNING << "\n\n"

<<" Solution found but the problem is dry !\n"
<< "It means that an optimal solution is found but the problem \n"
<< "only has one task computing anything, ans it's the"
<< "GlobalRegularisation task (This will only be printed once)\n\n"
<< "/!\\ Resulting torques will cause the robot to fall /!\\";

}

return solution_found_;
}

Generalized

Todo: Not yet implemented as of ORCA v.2.0.0

1.1.17 License

CeCILL-C FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result of discussions between its authors in order to
ensure compliance with the two main principles guiding its drafting:

• firstly, compliance with the principles governing the distribution of Free Software: access to source code, broad
rights granted to users,

• secondly, the election of a governing law, French law, with which it is conformant, both as regards the law of
torts and intellectual property law, and the protection that it offers to both authors and holders of the economic
rights over software.

The authors of the CeCILL-C (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre]) license are:

Commissariat à l’Energie Atomique - CEA, a public scientific, technical and industrial research establishment, having
its principal place of business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.
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Centre National de la Recherche Scientifique - CNRS, a public scientific and technological establishment, having its
principal place of business at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique - INRIA, a public scientific and technological
establishment, having its principal place of business at Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le
Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users the right to modify and re-use the software
governed by this license.

The exercising of this right is conditional upon the obligation to make available to the community the modifications
made to the source code of the software so as to contribute to its evolution.

In consideration of access to the source code and the rights to copy, modify and redistribute granted by the license,
users are provided only with a limited warranty and the software’s author, the holder of the economic rights, and the
successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying and/or developing or reproducing the software by
the user are brought to the user’s attention, given its Free Software status, which may make it complicated to use, with
the result that its use is reserved for developers and experienced professionals having in-depth computer knowledge.
Users are therefore encouraged to load and test the suitability of the software as regards their requirements in conditions
enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same
conditions of security. This Agreement may be freely reproduced and published, provided it is not altered, and that no
provisions are either added or removed herefrom.

This Agreement may apply to any or all software for which the holder of the economic rights decides to submit the
use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions commence with a capital letter, they shall have the
following meaning:

Agreement: means this license agreement, and its possible subsequent versions and annexes.

Software: means the software in its Object Code and/or Source Code form and, where applicable, its documentation,
“as is” when the Licensee accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its Object Code form and, where applicable, its
documentation, “as is” when it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one Integrated Contribution.

Source Code: means all the Software’s instructions and program lines to which access is required so as to modify the
Software.

Object Code: means the binary files originating from the compilation of the Source Code.

Holder: means the holder(s) of the economic rights over the Initial Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Integrated Contribution.

Licensor: means the Holder, or any other individual or legal entity, who distributes the Software under the Agreement.

Integrated Contribution: means any or all modifications, corrections, translations, adaptations and/or new functions
integrated into the Source Code by any or all Contributors.

Related Module: means a set of sources files including their documentation that, without modification to the Source
Code, enables supplementary functions or services in addition to those offered by the Software.

Derivative Software: means any combination of the Software, modified or not, and of a Related Module.
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Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the Licensee of a non-exclusive, transferable and world-
wide license for the Software as set forth in Article 5 hereinafter for the whole term of the protection granted by the
rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and conditions of this Agreement upon the occurrence
of the first of the following events:

• (i) loading the Software by any or all means, notably, by downloading from a remote server, or by loading from
a physical medium;

• (ii) the first time the Licensee exercises any of the rights granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the characteristics of the Software, to the limited
warranty, and to the fact that its use is restricted to experienced users has been provided to the Licensee prior to
its acceptance as set forth in Article 3.1 hereinabove, and the Licensee hereby acknowledges that it has read and
understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following rights over the Software for any or all use, and
for the term of the Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents protecting all or part of the functions of the Software
or of its components, the Licensor undertakes not to enforce the rights granted by these patents against successive
Licensees using, exploiting or modifying the Software. If these patents are transferred, the Licensor undertakes to
have the transferees subscribe to the obligations set forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation as to its fields of application, with it being
hereinafter specified that this comprises:

1. permanent or temporary reproduction of all or part of the Software by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or all medium.

3. entitlement to observe, study or test its operation so as to determine the ideas and principles behind any or
all constituent elements of said Software. This shall apply when the Licensee carries out any or all loading,
displaying, running, transmission or storage operation as regards the Software, that it is entitled to carry out
hereunder.

5.2 RIGHT OF MODIFICATION

The right of modification includes the right to translate, adapt, arrange, or make any or all modifications to the Soft-
ware, and the right to reproduce the resulting software. It includes, in particular, the right to create a Derivative
Software.
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The Licensee is authorized to make any or all modification to the Software provided that it includes an explicit notice
that it is the author of said modification and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish, transmit and communicate the Software to the
general public on any or all medium, and by any or all means, and the right to market, either in consideration of a fee,
or free of charge, one or more copies of the Software by any means.

The Licensee is further authorized to distribute copies of the modified or unmodified Software to third parties according
to the terms and conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in Source Code or Object Code form, provided
that said distribution complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor’s warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is redistributed, the Licensee allows effective access to
the full Source Code of the Software at a minimum during the entire period of its distribution of the Software, it being
understood that the additional cost of acquiring the Source Code shall not exceed the cost of transferring the data.

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes an Integrated Contribution to the Software, the terms and conditions for the distribution of
the resulting Modified Software become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in source code or object code form, provided that said
distribution complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor’s warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified Software is redistributed, the Licensee allows effective
access to the full source code of the Modified Software at a minimum during the entire period of its distribution of the
Modified Software, it being understood that the additional cost of acquiring the source code shall not exceed the cost
of transferring the data.

5.3.3 DISTRIBUTION OF DERIVATIVE SOFTWARE

When the Licensee creates Derivative Software, this Derivative Software may be distributed under a license agreement
other than this Agreement, subject to compliance with the requirement to include a notice concerning the rights over
the Software as defined in Article 6.4. In the event the creation of the Derivative Software required modification of the
Source Code, the Licensee undertakes that:

1. the resulting Modified Software will be governed by this Agreement,

2. the Integrated Contributions in the resulting Modified Software will be clearly identified and documented,

3. the Licensee will allow effective access to the source code of the Modified Software, at a minimum during the
entire period of distribution of the Derivative Software, such that such modifications may be carried over in a
subsequent version of the Software; it being understood that the additional cost of purchasing the source code
of the Modified Software shall not exceed the cost of transferring the data.

5.3.4 COMPATIBILITY WITH THE CeCILL LICENSE

When a Modified Software contains an Integrated Contribution subject to the CeCILL license agreement, or when a
Derivative Software contains a Related Module subject to the CeCILL license agreement, the provisions set forth in
the third item of Article 6.4 are optional.

Article 6 - INTELLECTUAL PROPERTY
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6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or all use of the Initial Software is subject to
compliance with the terms and conditions under which the Holder has elected to distribute its work and no one shall
be entitled to modify the terms and conditions for the distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at least by this Agreement, for the duration set forth
in Article 4.2.

6.2 OVER THE INTEGRATED CONTRIBUTIONS

The Licensee who develops an Integrated Contribution is the owner of the intellectual property rights over this Con-
tribution as defined by applicable law.

6.3 OVER THE RELATED MODULES

The Licensee who develops a Related Module is the owner of the intellectual property rights over this Related Module
as defined by applicable law and is free to choose the type of agreement that shall govern its distribution under the
conditions defined in Article 5.3.3.

6.4 NOTICE OF RIGHTS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies of the Software modified or not;

3. to ensure that use of the Software, its intellectual property notices and the fact that it is governed by the Agree-
ment is indicated in a text that is easily accessible, specifically from the interface of any Derivative Software.

The Licensee undertakes not to directly or indirectly infringe the intellectual property rights of the Holder and/or
Contributors on the Software and to take, where applicable, vis-à-vis its staff, any and all measures required to ensure
respect of said intellectual property rights of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to provide technical assistance or maintenance
services for the Software.

However, the Licensor is entitled to offer this type of services. The terms and conditions of such technical assistance,
and/or such maintenance, shall be set forth in a separate instrument. Only the Licensor offering said maintenance
and/or technical assistance services shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under its sole responsibility, a warranty, that shall only
be binding upon itself, for the redistribution of the Software and/or the Modified Software, under terms and conditions
that it is free to decide. Said warranty, and the financial terms and conditions of its application, shall be subject of a
separate instrument executed between the Licensor and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be entitled to claim compensation for any direct loss
it may have suffered from the Software as a result of a fault on the part of the relevant Licensor, subject to providing
evidence thereof.

8.2 The Licensor’s liability is limited to the commitments made under this Agreement and shall not be incurred
as a result of in particular: (i) loss due the Licensee’s total or partial failure to fulfill its obligations, (ii) direct or
consequential loss that is suffered by the Licensee due to the use or performance of the Software, and (iii) more
generally, any consequential loss. In particular the Parties expressly agree that any or all pecuniary or business loss
(i.e. loss of data, loss of profits, operating loss, loss of customers or orders, opportunity cost, any disturbance to
business activities) or any or all legal proceedings instituted against the Licensee by a third party, shall constitute
consequential loss and shall not provide entitlement to any or all compensation from the Licensor.

Article 9 - WARRANTY
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9.1 The Licensee acknowledges that the scientific and technical state-of-the-art when the Software was distributed
did not enable all possible uses to be tested and verified, nor for the presence of possible defects to be detected. In
this respect, the Licensee’s attention has been drawn to the risks associated with loading, using, modifying and/or
developing and reproducing the Software which are reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means, the suitability of the product for its requirements,
its good working order, and for ensuring that it shall not cause damage to either persons or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled to grant all the rights over the Software (including
in particular the rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied “as is” by the Licensor without any other express or tacit
warranty, other than that provided for in Article 9.2 and, in particular, without any warranty as to its commercial value,
its secured, safe, innovative or relevant nature.

Specifically, the Licensor does not warrant that the Software is free from any error, that it will operate without inter-
ruption, that it will be compatible with the Licensee’s own equipment and software configuration, nor that it will meet
the Licensee’s requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the Software does not infringe any third party
intellectual property right relating to a patent, software or any other property right. Therefore, the Licensor disclaims
any and all liability towards the Licensee arising out of any or all proceedings for infringement that may be instituted in
respect of the use, modification and redistribution of the Software. Nevertheless, should such proceedings be instituted
against the Licensee, the Licensor shall provide it with technical and legal assistance for its defense. Such technical
and legal assistance shall be decided on a case-by-case basis between the relevant Licensor and the Licensee pursuant
to a memorandum of understanding. The Licensor disclaims any and all liability as regards the Licensee’s use of the
name of the Software. No warranty is given as regards the existence of prior rights over the name of the Software or
as regards the existence of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations hereunder, the Licensor may automatically terminate
this Agreement thirty (30) days after notice has been sent to the Licensee and has remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be authorized to use, modify or distribute the Software.
However, any licenses that it may have granted prior to termination of the Agreement shall remain valid subject to
their having been granted in compliance with the terms and conditions hereof.

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to perform the Agreement, that may be attributable to
an event of force majeure, an act of God or an outside cause, such as defective functioning or interruptions of the
electricity or telecommunications networks, network paralysis following a virus attack, intervention by government
authorities, natural disasters, water damage, earthquakes, fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke one or more of the provisions hereof, shall
under no circumstances be interpreted as being a waiver by the interested Party of its right to invoke said provision(s)
subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements, whether written or oral, between the Parties
and having the same purpose, and constitutes the entirety of the agreement between said Parties concerning said
purpose. No supplement or modification to the terms and conditions hereof shall be effective as between the Parties
unless it is made in writing and signed by their duly authorized representatives.

11.4 In the event that one or more of the provisions hereof were to conflict with a current or future applicable act or
legislative text, said act or legislative text shall prevail, and the Parties shall make the necessary amendments so as to
comply with said act or legislative text. All other provisions shall remain effective. Similarly, invalidity of a provision
of the Agreement, for any reason whatsoever, shall not cause the Agreement as a whole to be invalid.
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11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is protected and may only be modified by the authors
of the License, who reserve the right to periodically publish updates or new versions of the Agreement, each with a
separate number. These subsequent versions may address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may only be subsequently distributed under the
same version of the Agreement or a subsequent version.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to endeavor to seek an amicable solution to any
disagreements or disputes that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their occurrence, and unless emergency proceedings
are necessary, the disagreements or disputes shall be referred to the Paris Courts having jurisdiction, by the more
diligent Party.

Version 1.0 dated 2006-09-05.
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CHAPTER 2

Authorship

Work on ORCA initially began in 2017 at the Institut des Systèmes Intelligents et de Robotique (ISIR). Since January
2018, active maintenance and development has been taken over by Fuzzy Logic Robotics S.A.S.

2.1 Maintainers

• Antoine Hoarau

• Ryan Lober

• Fuzzy Logic Robotics (info@fuzzylogicrobotics.com)

2.2 Contributors

• Vincent Padois

2.3 Related Publications

2.4 Partner Institutions
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