Minimum jerk Cartesian trajectory following

Note

The source code for this example can be found in [orca_root]/examples/gazebo/06-trajectory_following.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/gazebo/06-trajectory_following.cc

Full Code Listing

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// This file is a part of the ORCA framework.
// Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
// Copyright 2018, Fuzzy Logic Robotics
// Main contributor(s): Antoine Hoarau, Ryan Lober, and
// Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
//
// ORCA is a whole-body reactive controller framework for robotics.
//
// This software is governed by the CeCILL-C license under French law and
// abiding by the rules of distribution of free software.  You can  use,
// modify and/ or redistribute the software under the terms of the CeCILL-C
// license as circulated by CEA, CNRS and INRIA at the following URL
// "http://www.cecill.info".
//
// As a counterpart to the access to the source code and  rights to copy,
// modify and redistribute granted by the license, users are provided only
// with a limited warranty  and the software's author,  the holder of the
// economic rights,  and the successive licensors  have only  limited
// liability.
//
// In this respect, the user's attention is drawn to the risks associated
// with loading,  using,  modifying and/or developing or reproducing the
// software by the user in light of its specific status of free software,
// that may mean  that it is complicated to manipulate,  and  that  also
// therefore means  that it is reserved for developers  and  experienced
// professionals having in-depth computer knowledge. Users are therefore
// encouraged to load and test the software's suitability as regards their
// requirements in conditions enabling the security of their systems and/or
// data to be ensured and,  more generally, to use and operate it in the
// same conditions as regards security.
//
// The fact that you are presently reading this means that you have had
// knowledge of the CeCILL-C license and that you accept its terms.

/** @file
 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
 @author Antoine Hoarau
 @author Ryan Lober
*/

#include <orca/orca.h>
#include <orca/gazebo/GazeboServer.h>
#include <orca/gazebo/GazeboModel.h>

using namespace orca::all;
using namespace orca::gazebo;

class MinJerkPositionTrajectory {
private:
    Eigen::Vector3d alpha_, sp_, ep_;
    double duration_ = 0.0;
    double start_time_ = 0.0;
    bool first_call_ = true;
    bool traj_finished_ = false;

public:
    MinJerkPositionTrajectory (double duration)
    : duration_(duration)
    {
    }

    bool isTrajectoryFinished(){return traj_finished_;}

    void resetTrajectory(const Eigen::Vector3d& start_position, const Eigen::Vector3d& end_position)
    {
        sp_ = start_position;
        ep_ = end_position;
        alpha_ = ep_ - sp_;
        first_call_ = true;
        traj_finished_ = false;
    }

    void getDesired(double current_time, Eigen::Vector3d& p, Eigen::Vector3d& v, Eigen::Vector3d& a)
    {
        if(first_call_)
        {
            start_time_ = current_time;
            first_call_ = false;
        }
        double tau = (current_time - start_time_) / duration_;
        if(tau >= 1.0)
        {
            p = ep_;
            v = Eigen::Vector3d::Zero();
            a = Eigen::Vector3d::Zero();

            traj_finished_ = true;
            return;
        }
        p = sp_ + alpha_ * ( 10*pow(tau,3.0) - 15*pow(tau,4.0)  + 6*pow(tau,5.0)   );
        v = Eigen::Vector3d::Zero() + alpha_ * ( 30*pow(tau,2.0) - 60*pow(tau,3.0)  + 30*pow(tau,4.0)  );
        a = Eigen::Vector3d::Zero() + alpha_ * ( 60*pow(tau,1.0) - 180*pow(tau,2.0) + 120*pow(tau,3.0) );
    }
};


int main(int argc, char const *argv[])
{
    if(argc < 2)
    {
        std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -l debug/info/warning/error)" << "\n";
        return -1;
    }
    std::string urdf_url(argv[1]);

    orca::utils::Logger::parseArgv(argc, argv);

    auto robot_model = std::make_shared<RobotModel>();
    robot_model->loadModelFromFile(urdf_url);
    robot_model->setBaseFrame("base_link");
    robot_model->setGravity(Eigen::Vector3d(0,0,-9.81));

    orca::optim::Controller controller(
        "controller"
        ,robot_model
        ,orca::optim::ResolutionStrategy::OneLevelWeighted
        ,QPSolverImplType::qpOASES
    );

    const int ndof = robot_model->getNrOfDegreesOfFreedom();


    auto joint_pos_task = controller.addTask<JointAccelerationTask>("JointPosTask");

    // Eigen::VectorXd P(ndof);
    // P.setConstant(100);
    joint_pos_task->pid()->setProportionalGain(Eigen::VectorXd::Constant(ndof, 100));

    // Eigen::VectorXd I(ndof);
    // I.setConstant(1);
    joint_pos_task->pid()->setDerivativeGain(Eigen::VectorXd::Constant(ndof, 1));

    // Eigen::VectorXd windupLimit(ndof);
    // windupLimit.setConstant(10);
    joint_pos_task->pid()->setWindupLimit(Eigen::VectorXd::Constant(ndof, 10));

    // Eigen::VectorXd D(ndof);
    // D.setConstant(10);
    joint_pos_task->pid()->setDerivativeGain(Eigen::VectorXd::Constant(ndof, 10));

    joint_pos_task->setWeight(1.e-6);


    auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("CartTask_EE-servo_controller");
    Vector6d P;
    P << 1000, 1000, 1000, 10, 10, 10;
    cart_acc_pid->pid()->setProportionalGain(P);
    Vector6d D;
    D << 100, 100, 100, 1, 1, 1;
    cart_acc_pid->pid()->setDerivativeGain(D);
    cart_acc_pid->setControlFrame("link_7");
    
    auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
    cart_task->setServoController(cart_acc_pid);



    auto jnt_trq_cstr = controller.addConstraint<JointTorqueLimitConstraint>("JointTorqueLimit");
    Eigen::VectorXd jntTrqMax(ndof);
    jntTrqMax.setConstant(200.0);
    jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);

    auto jnt_pos_cstr = controller.addConstraint<JointPositionLimitConstraint>("JointPositionLimit");

    auto jnt_vel_cstr = controller.addConstraint<JointVelocityLimitConstraint>("JointVelocityLimit");
    Eigen::VectorXd jntVelMax(ndof);
    jntVelMax.setConstant(2.0);
    jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);

    GazeboServer gzserver(argc,argv);
    auto gz_model = GazeboModel(gzserver.insertModelFromURDFFile(urdf_url));
    gz_model.setModelConfiguration( { "joint_0", "joint_3","joint_5"} , {1.0,-M_PI/2.,M_PI/2.});

    ///////////////////////////////////////
    ///////////////////////////////////////
    ///////////////////////////////////////
    ///////////////////////////////////////

    MinJerkPositionTrajectory traj(5.0);
    int traj_loops = 0;
    Eigen::Vector3d start_position, end_position;
    Eigen::VectorXd controller_torques(ndof);
    Eigen::Affine3d desired_cartesian_pose;
    Vector6d desired_cartesian_vel = Vector6d::Zero();
    Vector6d desired_cartesian_acc = Vector6d::Zero();

    cart_task->onActivationCallback([](){
        std::cout << "Activating CartesianTask..." << '\n';
    });

    cart_task->onActivatedCallback([&](){
        desired_cartesian_pose = cart_acc_pid->getCurrentCartesianPose();
        Eigen::Quaterniond quat = orca::math::quatFromRPY(M_PI,0,0); // make it point to the table
        desired_cartesian_pose.linear() = quat.toRotationMatrix();

        start_position = desired_cartesian_pose.translation();
        end_position = start_position + Eigen::Vector3d(0,-0.35,-.3);
        traj.resetTrajectory(start_position, end_position);
    });

    cart_task->onComputeBeginCallback([&](double current_time, double dt){
        if (cart_task->getState() == TaskBase::State::Activated)
        {
            Eigen::Vector3d p, v, a;
            traj.getDesired(current_time, p, v, a);

            desired_cartesian_pose.translation() = p;
            desired_cartesian_vel.head(3) = v;
            desired_cartesian_acc.head(3) = a;

            cart_acc_pid->setDesired(desired_cartesian_pose.matrix(),desired_cartesian_vel,desired_cartesian_acc);
        }
    });

    cart_task->onComputeEndCallback([&](double current_time, double dt){
        if (cart_task->getState() == TaskBase::State::Activated)
        {
            if (traj.isTrajectoryFinished()  )
            {
                if (traj_loops < 10)
                {
                    // flip start and end positions.
                    auto ep = end_position;
                    end_position = start_position;
                    start_position = ep;
                    traj.resetTrajectory(start_position, end_position);
                    std::cout << "Changing trajectory direction. [" << traj_loops << " of 10]" << '\n';
                    ++traj_loops;
                }
                else
                {
                    std::cout << "Trajectory looping finished. Deactivating task and starting gravity compensation." << '\n';
                    cart_task->deactivate();
                }
            }
        }
    });

    cart_task->onDeactivationCallback([&](){
        std::cout << "Deactivating task." << '\n';
        std::cout << "\n\n\n" << '\n';
        std::cout << "Last controller_torques:\n" << controller_torques << '\n';
    });

    cart_task->onDeactivatedCallback([&](){
        std::cout << "CartesianTask deactivated." << '\n';
    });


    // Lets decide that the robot is gravity compensated
    // So we need to remove G(q) from the solution
    controller.removeGravityTorquesFromSolution(true);
    gz_model.executeAfterWorldUpdate([&](uint32_t n_iter,double current_time,double dt)
    {
        robot_model->setRobotState(gz_model.getWorldToBaseTransform().matrix()
                            ,gz_model.getJointPositions()
                            ,gz_model.getBaseVelocity()
                            ,gz_model.getJointVelocities()
                            ,gz_model.getGravity()
                        );
        gz_model.setJointGravityTorques(robot_model->getJointGravityTorques());
        // All tasks need the robot to be initialized during the activation phase
        if(n_iter == 1)
            controller.activateTasksAndConstraints();

        controller.update(current_time, dt);

        if(controller.solutionFound())
        {
            controller_torques = controller.getJointTorqueCommand();
            gz_model.setJointTorqueCommand( controller_torques );
        }
        else
        {
            gz_model.setBrakes(true);
        }
    });

    std::cout << "Simulation running... (GUI with \'gzclient\')" << '\n';
    // If you want to pause the simulation before starting it uncomment these lines
    // Note that to unlock it either open 'gzclient' and click on the play button
    // Or open a terminal and type 'gz world -p false'
    //
    std::cout << "Gazebo is paused, open gzclient to unpause it or type 'gz world -p false' in a new terminal" << '\n';
    gazebo::event::Events::pause.Signal(true);

    gzserver.run();
    return 0;
}