Using the internal plotting tools

Note

The source code for this example can be found in [orca_root]/examples/plotting/01-plotting_torques.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/plotting/01-plotting_torques.cc

Full Code Listing

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// This file is a part of the ORCA framework.
// Copyright 2017, ISIR / Universite Pierre et Marie Curie (UPMC)
// Copyright 2018, Fuzzy Logic Robotics
// Main contributor(s): Antoine Hoarau, Ryan Lober, and
// Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
//
// ORCA is a whole-body reactive controller framework for robotics.
//
// This software is governed by the CeCILL-C license under French law and
// abiding by the rules of distribution of free software.  You can  use,
// modify and/ or redistribute the software under the terms of the CeCILL-C
// license as circulated by CEA, CNRS and INRIA at the following URL
// "http://www.cecill.info".
//
// As a counterpart to the access to the source code and  rights to copy,
// modify and redistribute granted by the license, users are provided only
// with a limited warranty  and the software's author,  the holder of the
// economic rights,  and the successive licensors  have only  limited
// liability.
//
// In this respect, the user's attention is drawn to the risks associated
// with loading,  using,  modifying and/or developing or reproducing the
// software by the user in light of its specific status of free software,
// that may mean  that it is complicated to manipulate,  and  that  also
// therefore means  that it is reserved for developers  and  experienced
// professionals having in-depth computer knowledge. Users are therefore
// encouraged to load and test the software's suitability as regards their
// requirements in conditions enabling the security of their systems and/or
// data to be ensured and,  more generally, to use and operate it in the
// same conditions as regards security.
//
// The fact that you are presently reading this means that you have had
// knowledge of the CeCILL-C license and that you accept its terms.

/** @file
 @copyright 2018 Fuzzy Logic Robotics <info@fuzzylogicrobotics.com>
 @author Antoine Hoarau
 @author Ryan Lober
*/

#include <orca/orca.h>
#include <matplotlibcpp/matplotlibcpp.h>
using namespace orca::all;

namespace plt = matplotlibcpp;

int main(int argc, char const *argv[])
{
    // Get the urdf file from the command line
    if(argc < 2)
    {
        std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -l debug/info/warning/error)" << "\n";
        return -1;
    }
    std::string urdf_url(argv[1]);

    // Parse logger level as --log_level (or -l) debug/warning etc
    orca::utils::Logger::parseArgv(argc, argv);

    // Create the kinematic model that is shared by everybody
    auto robot_model = std::make_shared<RobotModel>(); // Here you can pass a robot name
    robot_model->loadModelFromFile(urdf_url); // If you don't pass a robot name, it is extracted from the urdf
    robot_model->setBaseFrame("base_link"); // All the transformations (end effector pose for example) will be expressed wrt this base frame
    robot_model->setGravity(Eigen::Vector3d(0,0,-9.81)); // Sets the world gravity (Optional)

    // This is an helper function to store the whole state of the robot as eigen vectors/matrices
    // This class is totally optional, it is just meant to keep consistency for the sizes of all the vectors/matrices
    // You can use it to fill data from either real robot and simulated robot
    RobotState eigState;
    eigState.resize(robot_model->getNrOfDegreesOfFreedom()); // resize all the vectors/matrices to match the robot configuration
    // Set the initial state to zero (arbitrary)
    // NOTE : here we only set q,qot because this example asserts we have a fixed base robot
    eigState.jointPos.setZero();
    eigState.jointVel.setZero();
    // Set the first state to the robot
    robot_model->setRobotState(eigState.jointPos,eigState.jointVel); // Now is the robot is considered 'initialized'

    // Instanciate an ORCA Controller
    orca::optim::Controller controller(
        "controller"
        ,robot_model
        ,orca::optim::ResolutionStrategy::OneLevelWeighted // MultiLevelWeighted, Generalized
        ,QPSolverImplType::qpOASES
    );

    auto cart_acc_pid = std::make_shared<CartesianAccelerationPID>("servo_controller");
    Vector6d P;
    P << 1000, 1000, 1000, 10, 10, 10;
    cart_acc_pid->pid()->setProportionalGain(P);
    Vector6d D;
    D << 100, 100, 100, 1, 1, 1;
    cart_acc_pid->pid()->setDerivativeGain(D);
    cart_acc_pid->setControlFrame("link_7");
    Eigen::Affine3d cart_pos_ref;
    cart_pos_ref.translation() = Eigen::Vector3d(0.3,-0.5,0.41); // x,y,z in meters
    cart_pos_ref.linear() = orca::math::quatFromRPY(M_PI,0,0).toRotationMatrix();
    Vector6d cart_vel_ref = Vector6d::Zero();
    Vector6d cart_acc_ref = Vector6d::Zero();
    cart_acc_pid->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_ref);
    
    auto cart_task = controller.addTask<CartesianTask>("CartTask_EE");
    cart_task->setServoController(cart_acc_pid);

    // Get the number of actuated joints
    const int ndof = robot_model->getNrOfDegreesOfFreedom();

    // Joint torque limit is usually given by the robot manufacturer
    auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit");
    controller.addConstraint(jnt_trq_cstr); // Add the constraint to the controller to initialize it
    Eigen::VectorXd jntTrqMax(ndof);
    jntTrqMax.setConstant(200.0);
    jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax); // because not read in the URDF for now

    // Joint position limits are automatically extracted from the URDF model
    // Note that you can set them if you want
    // by simply doing jnt_pos_cstr->setLimits(jntPosMin,jntPosMax);
    auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>("JointPositionLimit");
    controller.addConstraint(jnt_pos_cstr); // Add the constraint to the controller to initialize it

    // Joint velocity limits are usually given by the robot manufacturer
    auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>("JointVelocityLimit");
    controller.addConstraint(jnt_vel_cstr); // Add the constraint to the controller to initialize it
    Eigen::VectorXd jntVelMax(ndof);
    jntVelMax.setConstant(2.0);
    jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);  // because not read in the URDF for now

    double dt = 0.001;
    double total_time = 1.0;
    double current_time = 0;

    // Shortcut : activate all tasks
    controller.activateTasksAndConstraints();

    // Now you can run the control loop
    std::vector<double> time_log;
    int ncols = std::ceil(total_time/dt);
    Eigen::MatrixXd torqueMat(ndof,ncols);
    torqueMat.setZero();

    for (int count = 0; current_time < total_time; current_time +=dt)
    {
        time_log.push_back(current_time);

        // Here you can get the data from you REAL robot (API might vary)
        // Some thing like :
        //      eigState.jointPos = myRealRobot.getJointPositions();
        //      eigState.jointVel = myRealRobot.getJointVelocities();

        // Now update the internal kinematic model with data from REAL robot
        robot_model->setRobotState(eigState.jointPos,eigState.jointVel);

        // Step the controller
        if(controller.update(current_time,dt))
        {

            // Get the controller output
            const Eigen::VectorXd& full_solution = controller.getSolution();

            torqueMat.col(count) = controller.getJointTorqueCommand();

            const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();

            // Here you can send the commands to you REAL robot
            // Something like :
            // myRealRobot.setTorqueCommand(trq_cmd);
        }
        else
        {
            // Controller could not get the optimal torque
            // Now you have to save your robot
            // You can get the return code with controller.getReturnCode();
        }

        count++;

        std::cout << "current_time  " << current_time << '\n';
        std::cout << "total_time  " << total_time << '\n';
        std::cout << "time log size  " << time_log.size() << '\n';
        std::cout << "torqueMat.cols " << torqueMat.cols() << '\n';
    }

    // Print the last computed solution (just for fun)
    const Eigen::VectorXd& full_solution = controller.getSolution();
    const Eigen::VectorXd& trq_cmd = controller.getJointTorqueCommand();
    const Eigen::VectorXd& trq_acc = controller.getJointAccelerationCommand();
    LOG_INFO << "Full solution : " << full_solution.transpose();
    LOG_INFO << "Joint Acceleration command : " << trq_acc.transpose();
    LOG_INFO << "Joint Torque command       : " << trq_cmd.transpose();

    // At some point you want to close the controller nicely
    controller.deactivateTasksAndConstraints();
    // Let all the tasks ramp down to zero
    while(!controller.tasksAndConstraintsDeactivated())
    {
        current_time += dt;
        controller.print();
        controller.update(current_time,dt);
    }

    // Plot data
    for (size_t i = 0; i < torqueMat.rows(); i++)
    {
        std::vector<double> trq(time_log.size());
        Eigen::VectorXd::Map(trq.data(),time_log.size()) = torqueMat.row(i);
        plt::plot(time_log,trq);
    }
    plt::show();
    return 0;
}